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Abstract

Significant progress has been made in analyzing and predicting laser forming (LF) processes of sheet metal. Process synthesis in
laser forming, on the other hand, is concerned with determination of laser scanning paths and heat condition given a target shape
to form. This paper reports the development of a process synthesis methodology for laser forming of a class of shapes based on
genetic algorithm (GA). The effects of GA control parameters on the synthesis process are discussed. The effects of fitness func-
tion types on achieving multiple objectives are also investigated. The synthesis process is experimentally validated through several
cases under diverse conditions including one that involves close to thirty decision variables.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A laser forming (LF) process is characterized by
various process parameters such as laser scanning
paths and heating conditions including laser power and
scanning velocity. Making proper decisions regarding
controllable process parameters is the main problem
that a process designer is faced with. Much research
has been done to analyze deformation and residual
stress given laser scanning paths and heating con-
ditions. For instance, numerical and experimental
investigations have been carried out to better under-
stand laser forming process mechanisms and the effects
of key process parameters on dimension and mechan-
ical properties of the formed parts [1–4]. Temperature
and strain-rate dependent material properties have
been considered in the numerical models for laser
forming processes [5]. Convex laser bending based on
buckling mechanism has been investigated [6]. Micro-
structure dependent flow stress has been integrated in
FEM simulation of laser forming process [7].
For laser forming to become a practical process,

however, the issue of process synthesis needs to be
addressed, that is, designing laser scanning paths and
heating conditions for a given shape. Unlike traditional
machining, where cutter paths are readily determined
by offsetting a distance from the given part geometry,
process planning for laser forming is less obvious
especially for general 3D shapes. This is primarily
because laser forming induced deformation has its own
characteristics, and how to link them to the strain field
required to form the given part is generally not obvi-
ous. In addition, like many inverse problems, process
planning for LF has multiple solutions. A method
developed by Shimizu [8] used genetic algorithms
(GAs) to decide the laser heating paths, laser power,
and scanning velocity to form a simple domed shape.
However, the decision variables are set as discrete
values and the assumptions made were rather restric-
tive leading to inflexible solutions. It also experienced
difficulty when experimental validation of the result
was attempted. Hennige [9] and Magee et al. [10]
experimentally investigated the scanning patterns for
spherical shapes. Based on prior knowledge of the laser
forming process, radial and concentric scanning paths
were postulated and tested. Advantages and dis-
advantages of each as well as their various combina-
tions were shown and compared. Other process
parameters were only dealt with marginally.
GAs, which are optimization techniques based on

probabilistic transition rules, have been successfully
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implemented for a wide range of problems in physical
and social sciences, engineering and operations
research, and computer sciences [11,12]. GAs mimic the
natural evolution process by which superior creatures
evolve while inferior ones fade out from the population
as generations go on. GAs have been proved to be a
robust, simple-to-implement method, which can handle
a large set of parameters. The disadvantages of GAs
include their long computational time, and the semi-
empirical nature of the algorithm parameter selection
procedure. There have been reports on GAs’ applica-
tions in process design for metal working. Chung and
Hwang [13] presented a GA based approach for
process optimal design in hot forging, in which non-
isothermal process parameters were optimally determ-
ined. Roy et al. [14] applied GAs to optimal design of
process variables in multi-pass wire drawing. They
proposed micro-genetic algorithms (lGAs) and applied
the adaptive algorithms to the design process. By
choosing different objective functions, the GA based
optimization resulted in reduction of the number of
passes, reduction in total deformation energy, and
improved uniformity in effective plastic strain and tem-
perature distribution.
In this paper, a GA based approach is presented for

process synthesis applicable to laser forming of a class
of shapes. The synthesis scheme developed in this study
has the advantage of being able to handling a large
number of decision variables. This approach is vali-
dated through several cases. The effects of fitness func-
tion and control parameters of GAs (population size,
crossover rate and mutation rate) on the convergence
of the design process are also investigated.

2. Necessity of a heuristic approach

Given laser power P, scanning speed V, and beam
diameter D, as well as geometric attributes of sheet
metal n, laser scanning paths w, and material properties
f, the temperature distribution in the sheet metal being
irradiated by a scanning laser beam may be explicitly
expressed as

T ¼ f ðx;y;z;t;P;V ;D;n;w;fÞ ð1Þ

where x, y, z are the coordinates in X, Y, Z directions,
respectively, shown in Fig. 1(a), and t is he thickness of
the sheet. An example is the well-known steady-state
solution to the moving heating source problem, where
a line heating source scans the surface of a metal sheet
with constant speed. The temperature distribution can
be expressed as:

T ¼ Q

2pkt
exp

Vw

2a

� �
K0

Vr

2a

� �
ð2Þ

where Q, k, t, and a are heat input per unit time, ther-
mal conductivity, sheet metal thickness, and thermal
diffusivity, respectively; K0 is second kind Bessel func-
tion of zero order; V is the velocity of the moving
heating source; r is the radial distance from the heat
source center; and w is the distance from heating
source center along scanning direction. There are no
close-form solutions like Eq. (2) for more complex
situations but numerical solutions can be sought.
The explicit expression of deformation as a result of

the temperature distribution

Ux;y;z ¼ gðT ;x;y;z;t;n;fÞ ð3Þ

is, however, generally unobtainable. For one thing, this
is because T could contain a form of Bessel function
(Eq. (2)). As a result, Ux,y,z cannot be explicitly expres-
sed as a function of scanning paths and heating con-
ditions and requires methods like finite element
modeling or finite difference modeling to solve [3,7].
As a result, analytically or even numerically solving

the inverse problem, that is, determining the scanning
path and heat condition in terms of P, V, D, and w
given desired deformation Ux,y,z is obviously even less
feasible. This is why heuristic approaches such as
GAs provide a viable alternative. GAs differ from
traditional search and optimization methods in the fol-
lowing aspects. GAs use probabilistic transition rules,
not deterministic ones and therefore do not require
derivative information or other auxiliary knowledge;
only the objective function and corresponding fitness
levels influence the directions of search; GAs search a
Fig. 1. (a) Schematic of a class of shapes and parallel scanning

paths; and (b) sheet metal after laser formed using the scanning paths

in (a) (half of the sheet is formed assuming symmetry).
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population of points in parallel, therefore, GAs are tra-

veling in a search space with more individuals, and are

less likely to get stuck in a local extreme like some

other methods; and GAs can handle large sets of para-

meters including discrete ones.
3. Problem description

In this study, a class of target shapes is chosen to

investigate the feasibility of using GAs for process syn-

thesis of laser forming. As shown in Fig. 1a, the class

of target shapes assumes a general 2D profile in the

Y–Z plane while the profile remains unchanged in the

X direction. The class is chosen to allow relative sim-

plicity without loss of generality. It is further assumed

that the target shapes can be formed by a laser-scan-

ning pattern w consisting of straight-lines parallel to

each other and to the X-axis.
The decision variables, therefore, are N is the num-

ber of parallel scan lines; Pi (i ¼ 1 N) is the laser

power at the ith scan; Vi (i ¼ 1 N) is the laser-scanning

velocity at the ith scan; di (i ¼ 1 N) is the distance

between the ith and (iþ1)th scan lines or the sheet
edge. Laser beam size D is assumed constant. This

implies that the given shape will be either concave or

convex. The value of D in relation with sheet thickness

S0 used in this paper promotes the temperature gradi-

ent mechanism and thus only makes concave forming

possible. But the methodology presented in this paper

is applicable to convex or mixed concave/convex form-

ing, where D needs to be a variable as well. The

decision variables for the laser-forming problem

defined above can, therefore, be represented in terms of

a matrix. There are 3�N independent decision vari-

ables.

E ¼
P1 � � � PN

V1 � � � VN

d1 � � � dN

2
4

3
5 ð4Þ

The range of the decision variables is chosen as

P: [200,900] W and V: [20,90] mm/s. Please note the

number of parallel scan lines N is not an independent

variable and it is constrained by
PN

i¼1 di ¼ half sheet
width. Only half of a sheet is considered assuming sym-

metry.
Let Ri and hi denote the radius of curvature and

bending angle as the result of the ith scan, respectively

(Fig. 1a). It is also assumed that di � Rihi, that is,
adjacent scan lines do not overlap such that Ri and hi
are determined solely by the ith scan. The length of the

straight portion between arc Rihi and adjacent arc Riþ1
hiþ1 is denoted as hi ¼ di 	 Rihi. After the 1st, 2nd and
ith scans, coordinates of the partially formed 2D
profile can be expressed as:

Y1 ¼ y1; Z1 ¼ z1; Y2 ¼ Y1 þ y2cosh1 	 z2sinh1;

Z2 ¼ Z1 þ y2sinh1 	 z2cosh1 and

Yi ¼ Yi	1 þ yicos
Xi	1
k¼1

hk

 !
	 zisin

Xi	1
k¼1

hk

 !
;

Zi ¼ Zi	1 þ yisin
Xi	1
k¼1

hk

 !
	 zicos

Xi	1
k¼1

hk

 !
ð5Þ

respectively. This equation is derived in the following
way. The laser formed 2D profile is assumed to be arcs
connected by straight lines tangential to these arcs.
Therefore, the coordinates after ith scans are coordi-
nates after (i	1)th scans plus the coordinates transform-
ation of ith scans due to the aggregated bending angle,Pi	1

k¼1 hk. The coordinates after ith scans before coordi-
nates transformation are yi ¼ RisinðhÞ, and zi ¼
Rið1	 cosðhÞÞ for the arc section Rihi and h 2 ð0;hiÞ;
yi ¼ RisinðhiÞ þ hcosðhiÞ, and zi ¼ Rið1	 cosðhiÞÞ þ
hsinðhiÞ for the straight segment hi and h 2 ð0;di 	 RihiÞ.
The above equations will be used to express the

formed shapes in the fitness function, which is part of
the GAs to be explained in Section 5.2. Additionally, in
the process of applying the GAs, it is necessary to
determine hi and Ri for candidate design variables Pi

and Vi. While this could be achieved via the well-estab-
lished, full-blown FEM modeling, a more feasible
approach is to use empirical relationships based on
readily available experimental data since the number of
such determination is large as GAs evaluate many can-
didate values of the design variables. Shown in Figs. 2
and 3 are bending angle hi and radius of curvature Ri

vs. power and velocity, respectively, based on experi-
mental data of 1010 steel coupons of 80 by 80 by 0.89
mm with beam size of 4 mm, the same condition to be
Fig. 2. Linear fit of bending angle and P=V2=3 from experimental

results.
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used in the paper. As seen from Fig. 2, bending angle
correlates linearly with P=V2=3. This result may some-
what differ from others [1,15], but it conveniently
serves the purpose of this paper since the conditions
under which the two figures are constructed are the
same as the ones being considered in this paper.
4. Genetic algorithms

GAs are a class of stochastic search methods that
mimic the metaphor of natural biological evolution.
GAs operate on a population of potential solutions
applying the principle of survival of the fittest to pro-
duce better and better approximations to a solution,
just as in natural adaptation. The basis steps of
implementing GAs are summarized in Fig. 4 with more
discussions in Section 5. First, generate a random
population of Np; second, evaluate the fitness of each
chromosome in the population and create a new popu-
lation by repeating the following steps until the new
population is complete: (a) select parent chromosomes
from a population according to their fitness (the better
fitness, the higher chance to be selected; (b) with a
crossover probability, cross over the parents to form a
new offspring; (c) with a mutation probability mutate
the new offspring at each locus (position in chromo-
some); (d) place new offspring in a new population;
(e) use newly generated population for a further run of
algorithm; (f) if the end condition is satisfied, stop, and
return the best solution in current population.
How to choose the control parameters (such as

population size, crossover rate, mutation rate, rep-
resentation of decision parameters and others) is
important to the performance of GAs. There have been
studies investigating the interactions among different
GA parameters for successful application of GAs [16]
and control maps for operator probabilities [17,18].
But their interactions are largely dependent on the
function being optimized and therefore only general
guidelines are appropriate, which are briefly summar-
ized below for the self containment of the paper.
Population size is the first parameter to choose.

Generally, a highly undulating cost surface should have
a larger population than a smooth cost surface. There
is always a trade-off between the number of genera-
tions the algorithm needs to converge vs. the size of the
population. A small population size causes the GA to
quickly converge to a local optimum, while a large
population size takes too long to find and assemble the
building blocks to the optimum solution. The number
of evaluations, that is, the produce of population size
and the number of generations required to converge, is
a good measure of the algorithm efficiency. Grefenst-
ette [19] used genetic algorithm to optimize genetic
3. Relationship of heat conditions and radius of curva
Fig. ture

from experimental/numerical study.
Fig. 4. The basis steps of implementing GAs.
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algorithm parameters. Unfortunately, the optimum
parameters for one problem are not the optimum para-
meters for another. He also found that relatively large
populations are good for parallel implementations of
the GA, while relatively small populations are good for
serial implementations. The most effective population
size is dependent on the problem being solved, the rep-
resentation used, and the operator manipulating the
parameters [20]. Mühlenbein [21] modeled the GAs
based on Markov chain analysis. He calculated the
transition probability of moving to the optimal string
from any string and then estimated the expected tran-
sition time. He showed that this transition probability
reduces with population size, giving rise to the concept
of a minimum population size below which GAs are
not expected to work. Goldberg et al. [16] showed that
a population size Np is necessary to trigger correct
building block processing based on correct schema pro-
cessing:

Np ¼ 2ckr20=f
2
0 ð6Þ

where f0 and r0 are the mean and variance of the fit-
ness values, respectively; k is the number of competing
schemas; and the factor c varies with error rate

a ¼ expð 	 c=2Þ=
ffiffiffiffiffiffiffiffi
2pc

p
.

Crossover operator is a constructive process, which
can combine good partial solutions together to form
the optimal solution. The goal of the crossover oper-
ator is to pass on desirable traits to the next gener-
ation. Crossover rate C determines the number of
chromosomes that enter the mating pool. If crossover
rate is too high, good building blocks do not have the
opportunity to accumulate within a single chromo-
some. A low crossover rate, on the other hand, does
not do much exploring of the cost surface. By mutation
operator, offspring variables are mutated by small ran-
dom values. Bäck [22] reported that for unimodal func-
tions a mutation rate of 1=Np was the best choice. This
value may be still valid when fitness function is multi-
modal. Generally, with a small mutation rate, the
algorithm is easy to converge to local optima, while a
large mutation rate destroys the already-found building
blocks. In practice, these control parameters are often
determined semi-empirically on a case-by-case basis in
order to minimize the number of evaluations required,
which is the product of population size and the genera-
tions that take to converge. How these control para-
meters are chosen will be illustrated in the next section.
5. Results and discussions

As explained in Section 3, the sheet dimension is
80� 80� 0:89 mm, and the laser beam diameter is 4
mm. Only half of the sheet is scanned (Fig. 1(b)). The
class of target shapes is characterized by a profile on
the Y–Z plane and the profile remains unchanged in
the X direction (Fig. 1). The 2D target profiles investi-
gated in the paper include a circular profile of constant

radius of 0.1 m and a parabolic profile z ¼ 8y2. The
former has a constant curvature while the latter a vary-
ing curvature. The scanning pattern is straight-lines
and parallel to each other and parallel to the X-axis.
5.1. Optimal GA parameters for the problem

To choose the best GA parameters for process
design of laser forming process, the following case is
considered. The target shape is the circular profile men-
tioned above. Due to its constant radius of curvature,
Pi ¼ P and di ¼ d ¼ half of the sheet width=N are
assumed. The scanning velocity is set as a constant,
Vi ¼ V ¼ 50 mm=s, and therefore P and N are the two
design variables to be determined.
To choose the optimal population size, the crossover

rate, C, and mutation rate, M, are chosen as 0.8 and
0.05, respectively, while the population size varies from
5 to 500. Fig. 5(a) shows the development of the fitness
function value (Eq. (7)) with generation for several
population sizes. The fitness is evaluated using the fol-
lowing fitness function

f1 ¼ 1

�
1þ

ðl
0

f ðyÞ 	 f0ðyÞj jdy
lS0

� �� �N

ð7Þ

where f(y) represents the formed shape function, f0(y) is
the target shape function, S0 is the sheet thickness, l
is the sheet length, and N is the number of scan lines.
jf ðyÞ	f 0ðyÞj specifies the vertical difference between the
formed and target surfaces for the same y coordinate.
The result shows that the number of generations to
achieve convergence decreases with increasing popu-
lation size, which is consistent with many previous stu-
dies using GAs [11,16]. The minimum population size
below which GAs are not expected to work (Eq. (6)) is
determined as 17. The mean and variance of the fitness

values �ff 0 ¼ 0:26, and �rr0 ¼ 0:59 were obtained by sam-
pling 1000 chromosomes randomly generated. k ¼ 1,
and c ¼ 1:67 (with 90% confidence) were used (Eq. (6)).
Figs. 5(b) and (c) show that GAs with about Np ¼ 20
work the best for the chosen crossover and mutation
rates because they give the lowest number of evalua-
tions.
Fig. 5(b) also shows the effect of crossover rate on

the convergence speed at different population sizes.
Mutation rate is set as 0.05 and crossover rate varies
from 0 to 1. The number of evaluation when crossover
rate is 0.5 is much larger than that when crossover rate
is large (C ¼ 0:8 or 1). The GAs do not converge when
crossover rate is 0 or 0.1. This is because crossover
operator is a constructive process, which can combine
good partial solutions together to form the optimal
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solution. There is slight difference in convergence speed

between crossover rate of 0.8 and 1.
A similar approach was applied to investigate the

effect of mutation rate on the convergence. Crossover

rate is set as 0.8 here (Fig. 5(c)) while mutation rate

varies from 0 to 1. As seen, M ¼ 0:05 gives the lowest
number of evaluations at population size about 20. The

GAs do not converge when mutation rate is 1. This is

because a large mutation destroys the already-found
building blocks in a population. The results from Bäck
[22] help confirm the observation. He concluded that if
cost function is a uni-modal pseudoboolean function,
mutation rate M ¼ 1=Np is the best choice. When the
fitness function becomes multi-modal, mutations rate
M ¼ 1=Np is still valid to overcome local optima, when
crossover is introduced. In this case, when population
size is about 20, the best mutation rate is about
1=20 ¼ 0:05.
These results show that if the population size is

adequate, a combination of large crossover with a
small mutation provides efficient evolution (conver-
gence). Specifically, for this case, the best set of control
parameters is population size about 20, high crossover
rate (larger than 0.8), and low mutation rate (smaller
than 0.05).
5.2. Fitness function

The selection of fitness function has to be consistent
with the nature of the problem at hand and the objec-
tive of the optimization. In this study, the issues con-
cerned the most are geometry accuracy, total forming
time, and energy consumption. Based on these
considerations, two fitness functions are formulated.
The first fitness function was shown in Eq. (7) in

Section 5.1. The geometry and number of scans are
considered. As seen, the optimal fitness value is 1 when
f(y) equals f0(y). The fitness value decreases as the
number of scans increases and the shape difference
increases. A large number of N favors geometry accu-
racy but generally consumes more time.
The second fitness function is

f2 ¼ a

�
1þ

ðl
0

f ðyÞ 	 f0ðyÞj jdy
lS0

� �

þ b
XN
i¼1

Pili
Vi

" #
min

,XN
i¼1

Pili
Vi

ð8Þ

Pi, Vi, and li are power, scanning velocity and length of
the ith scanning path, respectively. Pili=Vi is the energy

consumption at the ith scan. ½
PN

i¼1 Pili=Vi�min is the
minimal total energy consumption among all the
strings in a generation. The first item of this fitness
function measures the fitness associated with geometry
accuracy weighted by a; and the second item energy
consumption weighted by b, and a ¼ 1	 b.
To compare the effect of optimization results using

these two fitness functions, f2 was applied to the case of
V ¼ 50 mm=s as dealt with in Section 5.1. In Section
5.1, the results shown in Figs. 5 and 6 were obtained
using the fitness function f1. Fig. 7 compares the devel-
opment of the number of scans and power with genera-
tions using the two fitness functions. In fitness
function, f2, a and b are both set as 0.5. The results
show that N converged to 14 using f1 (the same as in
Fig. 5. (a) Effect of population size Np on fitness convergence; (b)

effect of crossover rate on the number of generations and number of

evaluations (¼ Np � generations); (c) effect of mutation rate on the
number of generations and number of evaluations.
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Fig. 6(a)), and converged to 10 using f2. The corre-
sponding P converged to 825 W (the same as in
Fig. 6(a)) and 846 W, respectively. The converged fit-
ness f1 and f2 are 0.994 (Fig. 6(a)) and 0.84 (not
shown), respectively. It is seen that with f1, the GA
results have better geometric accuracy while the energy
consumption is higher. If the formulation of the second
term in Eq. (10) is used, the fitness of energy consump-
tion is about 0.64. With f2, however, the GA results
have better energy consumption while compromising
the geometry accuracy somewhat. If Eq. (9) is used, the
fitness of geometric accuracy is about 0.865. The result
under f2 naturally varies with the choice of a and b
(¼ 1	 a) value. Fig. 8 shows the effect of a on the bal-
ance between the fitness associated with geometry accu-
racy (the first term in Eq. (10)) and energy
consumption (the second term in Eq. (10)). It is seen
that the converged geometry accuracy increases and
energy consumption fitness decreases with increasing a.
The fitness function, therefore, should be carefully
chosen to have results that best reflect the process
designer’s priorities.
5.3. Overall strategy of process synthesis of laser
forming

With optimized control parameters and carefully
chosen fitness function, the GA optimization of laser
forming process is implemented in four steps. (1) An
initial set of 20 chromosomes is randomly generated
within a range. Each chromosome represents a scan-
ning pattern and heat condition in terms of 3�N
decision variables as described in Section 3. The range
for P is chosen as 200 to 900 W based on the prior
knowledge of the deformation/power relationship and
the desired shape. The range for N is chosen as 5–15
based on the fact that no significant overlapping of
scan lines is desired, and the sheet metal half width and
laser beam size D are 40 and 4 mm, respectively. (2)
The fitness of the 20 chromosomes is evaluated using
the fitness function shown in Eq. (7) because geometry
accuracy is the first priority in this study. Ten chromo-
somes having the highest fitness values are chosen.
Eight of these 10 chromosomes (C ¼ 0:8) crossover
with other 8 out of 10 randomly generated chromo-
somes to generate new chromosomes according to

Enewij ¼ rcE
1
ij þ ð1	 rcÞE2ij ð9Þ

where E1ij and E2ij are one of the 8 best chromosomes

and one of the 8 randomly generated chromosomes,
respectively (also see Eq. (4)); and rc is a random num-
ber from a (0,1) uniform distribution. (3) The new set
of 20 chromosomes (16 crossovered ones and four un-
crossovered ones) are then mutated according to

Emutateij ¼ Uðai;biÞ ð10Þ
Fig. 7. Comparison of fitness function effects on GAs optimization

results (fitness functions 1 and 2 are specified by Eqs. (9) and (10)).
Fig. 8. Effects of weighting coefficients in the second fitness function

(Eq. (10)) on the fitness of geometry accuracy (the first term in

Eq. (10)) and energy consumption (the second term in Eq. (10)).
Fig. 6. The development of fitness and decision variables (number

of scan lines and power) during GAs optimization with V set as

50 mm/s.
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where ai and bi are the range of the ith decision vari-
able. U(ai,bi) is a randomly generated value from (ai,bi)
uniform distribution. (4) The new set of offsprings after
selection, crossover and mutation operators, are chosen
for the next generation. Steps 2 and 3 are repeated
until a global convergence measure is achieved. The
global convergence is assumed if no improvement in
the fitness value takes place after a fixed number of
trials, which is set as 20 in this study. With these steps,
convergence to P ¼ 825 W and N ¼ 14 was achieved in
about 20 generations with a fitness value of 0.984
(Fig. 6) in the above case with circular profile as target
shape (radius ¼ 0:1 m) and V is set as 50 mm/s. The
overlapping of adjacent scans is avoided since interval
between scans di � Rihi. Rihi is around 0.4 mm under
conditions of P ¼ 825 W, V ¼ 50 mm=s, while di ¼
d ¼ 40ðhalf plate widthÞ=14ðor 18Þ is larger than 2

mm. The constraint of the decision variable is 25 �
P=V2=3 � 65 because it is shown in Fig. 2 that the lin-
ear relationship between bending angle and P=V2=3 is
with a range. As we discussed in Section 3, the final
shape is decided by the aggregated bending angle and
curvature, which are both functions of power and velo-
city. Therefore, if the number of scans is variable, there
could be different combination of power and velocity
for a target shape.

5.4. Two case studies with experimental validation

5.4.1. Case 1: circular profile in Y–Z plane (P and V
variables, N and d constants)
To test the algorithm’s applicability under other con-

ditions, two case studies were conducted. In the first
case, laser heating power is a constant variable, Pi ¼ P,
velocity is a constant variable, Vi ¼ V , and the number
of scans N is set constant equal to 10. Therefore, there
are two decision variables P and V. di ¼ half sheet
width=N ¼ 40=10 ¼ 4 mm. The target shape remains
as a circular profile with diameter of 0.1 m in the Y–Z

plane (Fig. 9). Fig. 10(a) shows the development of the

decision variables, P and V, as well as the fitness value

during the GA optimization. Fig. 9 shows the shape
Fig. 9. The development of shape during optimization process of

GAs (Case 1).
Fig. 10. (a) Convergence history of decision variables P and V, and

fitness with N ¼ 10; (b) comparison of shapes from GA optimization,
experimental and target; and (c) convergence history of fitness when

N ¼ 6, 8, and 10, respectively.
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evolution during the optimization process of GA. The
results in Figs. 9 and 10a show that when the number
of generations reaches about 30, the shape from GAs
optimization is very close to the target shape, and P
and V converge to optimal values of 875 W and 56
mm/s, respectively. Fig. 10(a) also shows that the fit-
ness of the converged results is close to optimal, 0.982.
To validate the solutions from the GA optimization,

an laser forming experiment was conducted under the
same conditions. The shape after laser forming is
compared with the target shape as shown in Fig. 10(b).
The formed shape is then measured by a coordinate
measuring machine (CMM). Three samples were
formed and error bars were added in Fig. 10(c). It
shows that the shape after laser forming is close to the
target shape. Therefore, the GA optimization is proven
to be a valid method to solve the process design
problem for the target shape. To test the validity under
different predetermined number of scans, GA optimiza-
tion was conducted with the number of scans of 6 and
8 and the convergence history of fitness is shown in
Fig. 10(c). As seen, when the number of scans is 10 and
8, the fitness approaches the optimal value of 1 and for
N ¼ 6 to a value less than 1. It is obvious that for a
smaller number of scans, the closeness between the
target and actual shapes is limited.

5.4.2. Case 2: parabola profile in Y–Z plane (di and Pi

variables, V and N constants)
This case assumes a parabolic target shape of

z ¼ 8y2, whose radius of curvature increases with Y
(Fig. 11(a)). As a result, the intervals between scans, di,
and powers of each scan, Pi, are chosen to be variables
from scan to scan. The number of scans, N, is set to
15, and the scanning velocity of each scan is set as
Vi ¼ V ¼ 50 mm=s. As a result, the total number of
decision variables is 29, that is Pi and di (i ¼ 1 15) but
Fig. 11. (a) The comparison of shapes from GAs optimization, tar-

get and experiment; and (b) the development of fitness during GAs

optimization, the converged result is close to optimal (Case 2).
Table 1

GA optimization results (Case 2)
N ¼ 15
 N ¼ 12
 N ¼ 8

No. d
i (mm)
 Pi (W) N
o.
 di (mm) P
i (W)
 No. d
i (mm)
 Pi (W)
1 2
.504
 682.8
 1
 3.197 7
54.4
 1 4
.848
 859.3
2 2
.512
 679.2
 2
 3.208 7
48.3
 2 4
.867
 852.1
3 2
.518
 675.8
 3
 3.215 7
43.5
 3 4
.921
 846.5
4 2
.527
 672.6
 4
 3.227 7
38.2
 4 4
.957
 841
5 2
.555
 670.6
 5
 3.263 7
33.6
 5 4
.993
 837.3
6 2
.574
 668.8
 6
 3.287 7
29.5
 6 5
.066
 835
7 2
.593
 666.9
 7
 3.311 7
25.8
 7 5
.138
 832.6
8 2
.63
 665.2
 8
 3.359 7
22.5
 8 5
.21
 830.2
9 2
.668
 663.8
 9
 3.407 7
19.4
10 2
.705
 662.5 1
0
 3.455 7
16.3
11 2
.743
 661.4 1
1
 3.503 7
13.2
12 2
.79
 660.3 1
2
 3.563 7
10.6
13 2
.837
 659
14 2
.893
 657.8
15 2
.95
 656.1
C
onverged fitness
 Converged fitness
 C
onverged fitness
0
.978
 0.972
 0
.885
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summation of all dis equals the half sheet width of 40

mm. The left side of Table 1 lists the design results
from the GA optimization. As seen, di increases and Pi

decreases with the scan number (towards larger Y
values) in order to match the increasing radius of cur-

vature of the target shape. Fig. 11(a) shows a good
agreement between the shape from GA optimization
and the target shape. Fig. 11(b) shows that the fitness
of the converged results is close to optimal, 0.978, but
only after a much larger number of generations than in

the other two cases, simply because of the larger num-
ber of decision variables in this case. This case shows
that when the profile of the target shape is more
complex and the number of decision variables is large,

the algorithm converges but with a large time pre-
mium. Similarly, experiments were conducted under the
conditions from the GA optimization, and results were
superimposed in Fig. 11(a). The experimental shape

agrees reasonably well with the target shape. To test
the validity under different predetermined number of
scans, GA experiments were conducted with the num-
ber of scans of 8 and 12. The results are shown in the

mid and right side of Table 1. When the number of
scans is 12 or 8, the fitness also converges but to
slightly smaller values as expected.
6. Conclusions

In this paper, a synthesis process for laser forming of
sheet metal based on GAs is presented. It was demon-
strated through this investigation that given a desired
shape for the class of shapes concerned, the present

approach is effective in determining the optimal values
of diverse process parameters for laser forming process.
It was also shown that it is able to handle a large num-
ber of decision variables. When the number of decision

variables was close to 30, however, it took a large num-
ber of generations to achieve convergence. Investiga-
tions showed that the algorithm control parameters
and the fitness function type have significant effects on

the GA synthesis results. It is shown that a proper
form of fitness function is important to balance among
competing objectives, such as geometric accuracy,
forming time, and energy consumption.
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