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Abstract
The laser forming process of sheet metal has been exten-

sively analyzed, but few attempts have been made in the
area of process design. The task of the process design in the
laser forming of sheet metal is to determine a set of para-
meters, including laser scanning paths, laser power, and
scanning speed, given a prescribed shape. Response sur-
face methodology is used as an optimization tool. The prop-
agation of error technique is built into the design process as
an additional response to be optimized via desirability func-
tion and hence make the design robust. Focusing on a class
of shapes, the design scheme is applied progressively in four
cases in which issues such as a large number of design vari-
ables are properly addressed.

Keywords: Optimal Design, Response Surface
Methodology, Propagation of Error, Laser Forming

1. Introduction 
Compared with conventional forming techniques,

laser forming of sheet metal does not require hard
tooling or external forces and, hence, can increase
process flexibility and reduce the cost of the form-
ing process when low to medium production volume
is concerned. Many efforts have been made on
mechanisms and modeling of the process. Magee,
Watkins, and Steen (1998) reviewed literature avail-
able up to 1998. More recently, selected issues relat-
ed to extending laser forming to more practical
applications have started being addressed. For
instance, repeated scanning is necessary to obtain
the magnitude of deformation that practical parts
require, and hence cooling effects during and
between consecutive scans become critical (Cheng
and Yao 2001a). Another example is to consider the
dependence of material flow stress on the
microstructure change in modeling laser forming
with repeated scanning, where material undergoes
heating and cooling cycles (Cheng and Yao 2001b). 

A vast majority of work on laser forming, includ-
ing that mentioned above, can be considered as solv-
ing the direct problem, that is, finding the spatial

and temporal distribution of temperature,
strain/stress state, and ultimately, deformation of a
workpiece, given process and material parameters.
Such a problem is typically formulated based on
physical laws such as heat transfer and elastici-
ty/plasticity theories. The solution to such a prob-
lem may take an analytic form such as the well-
known solution to a moving heat source problem
that includes a Bessel function, or require a
numerical method such as the finite element
method (FEM) for plate/shell deformation. More
specifically, the following mapping F can be ana-
lytically or numerically found:

U = F(�, �, �, t) (1)

where U represents deformation of the given
workpiece, � process parameters, including laser
power, beam scanning velocity, beam diameter,
and laser paths, � material properties, � coordi-
nates, and t time.

To apply the laser forming process to real-world
problems, however, the inverse problem needs to be
addressed, that is, to design process parameters �
given a desired shape U. More specifically, the
inverse problem is to find mapping g.

� = g(U, �, �, t) (2)

Solving the inverse problem analytically or
numerically is difficult, if not impossible, for the
following reasons. First, Eq. (1) is obtained by solv-
ing differential equations based on physical laws,
while no physical laws are readily available to estab-
lish governing equations leading to the solution
shown in Eq. (2). Second, to manipulate either the
solution to the direct problem [Eq. (1)] or the under-
lying differential equations leading to a solution to
the inverse problem is also impossible because of
the complexity involved or because parts such as the
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Bessel function mentioned above do not lend them-
selves to manipulation (Vollertsen 1994). Third,
while the solution to the direct problem is unique,
the solution to the inverse problem is certainly
multi-valued. There could be more than one � for
the same desirable shape U.

Given the understanding that numerical or ana-
lytical solutions to the inverse problem are less
likely, empirical and heuristic approaches have
been attempted. Hennige (2000) and Magee,
Watkins, and Hennige (1999) investigated the irra-
diation patterns for a type of axis-symmetric
shapes—spherical shapes. Based on prior knowl-
edge of the laser forming process, radial and con-
centric irradiation paths were postulated and test-
ed. Advantages and disadvantages of each, as well
as their various combinations, were shown and
compared. Other process parameters were only
dealt with marginally. A genetic algorithm (GA)
based approach, which is an adaptive heuristic
search algorithm premised on the evolutionary
ideas of natural selection and genetics, was pro-
posed by Shimizu (1997) as an optimization
engine to solve the inverse problem of the laser
forming process. In his study, a set of arbitrarily
chosen heat process conditions for a dome shape
was encoded into strings of binary bits, which
evolve over generations following the natural
selection scheme. One of the important process
parameters, heating path positions, was assumed
given. To apply GA, it is necessary to specify
crossover rate and mutation rate, but their selec-
tion suffers from lack of rigorous criteria. 

The objective of this paper is to develop a more
systematic and reliable methodology to solve the
inverse problem in laser forming for a class of
shapes. A response surface methodology (RSM)
based approach is attempted as an optimization tool.
Discrete design variables are properly dealt with in
the optimization process. The propagation of error
(POE) technique is built into the design process as
an additional response to be optimized via a desir-
ability function and hence make the design more
robust. Experiments and, at places, the finite ele-
ment method (FEM) are used to enable and validate
the optimization process. The proposed approach is
applied to four cases, which are progressively more
involved, to demonstrate its validity.

2. Problem Description 
As shown in Figure 1, rectangular or circular sheet

metal is to be formed into 3-D shapes by parallel or
concentric laser irradiation paths S1, S2, ..., and SN. If
the variation of laser-induced bending angle along a
particular irradiation path is not considered, that is, the
edge effects in the laser forming process are neglected
(Bao and Yao 2001), the 3-D shapes can be viewed as
shapes generated by a 2-D generatrix in the y-z plane
extruded in the x direction for the rectangular case
(Figure 1a), and by a 2-D generatrix in the r-z plane
revolved around the z axis for the circular plate case
(Figure 1b). Therefore, for this class of 3-D shapes, the
inverse design problem can be treated as a 2-D curve
design problem. The 2-D curve is the generatrix,
which is assumed given in the inverse problem.
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Figure 1
Schematic of a Class of Shapes To Be Laser Formed

(a) Linear parallel scanning paths on a rectangular plate and (b) Concentric paths on a quarter-circle plate (� represents in-plane angle)
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As shown in Figure 1, the parameters needed to
be determined include number of scanning paths,
N; positions of laser scanning paths, di (i = 1, 2, ...,
N�1) for the rectangular case or ri (i = 1, 2, ...,
N�1) for the circular case; laser powers, pi (i = 1, 2,
..., N); beam scanning velocity, vi (i = 1, 2, ..., N);
and laser spot diameter, Db. Among them, di and ri

should remain within the plate; that is, , and
ri � R, where W is the width of the rectangular plate
and R is the radius of the circular plate. Assuming a
constant laser spot diameter, Db, for all the paths
implies the 2-D generatrix curve being monotonic
for simplicity without loss of generality. The
approach presented in this paper, however, is not
restricted to monotonic cases. A nonmonotonic
generatrix (i.e., combination of convex and concave
sections) can be similarly dealt with using different
beam spot sizes for different paths. As is well
known, a smaller spot size compared with sheet
thickness favors the temperature gradient mecha-
nism leading to concave bending, while a larger
spot size favors the buckling mechanism likely
leading to convex bending. In a real-world problem,
not all the parameters mentioned above need to be
determined in the design process; some of them are
required to be kept constant.

In the optimal design process based on the
response surface methodology presented in this
paper, the objective is to minimize the difference
between a possible solution shape and the pre-
scribed shape, that is

Minimize (3) 

where zs and zp are the z coordinates of corre-
sponding points on the generatrix of the possible
solution shape and the prescribed shape, respec-
tively, and k is the number of points. It will be seen
that values of the objective function h in fact serve
as responses in the optimization process. In addi-
tion, if a point in the possible solution shape has a
smaller z value than the corresponding point of the
prescribed shape, the distance is defined as nega-
tive; otherwise, it is positive. When the sum of the
distances is positive, the objective (or response) is
considered positive; otherwise, it is negative. That 

is, determines the sign of the 

objective (or response). It is necessary to consider
the sign in order to determine if more or less defor-
mation is needed.

The final design of a product is required not only
to be optimal but also robust, namely, insensitive to
the variation of input variables. In the laser forming
process, the achievable accuracy of forming is limit-
ed by numerous uncertainties. Hennige, Holzer, and
Vollertsen (1997) investigated influencing uncer-
tainties in laser forming based on analyzing error
propagation. They found that variations in power
and the coupling coefficient are the most influential
factors on the variation of deformation. In this
paper, the influence of laser power on the robustness
of the optimal design will be addressed in a robust
design phase based on desirability consideration.

In this study, square plates of size 80×80×0.89
mm and quarter-circle plates of 80 mm radius and
0.89 mm thickness are used. For the circular plate,
the in-plane angle � is defined as the angle between
the front cross-section plane and a cross-sectional
plane perpendicular to the concentric scanning paths
(Figure 1b). The material used is AISI1012 low-car-
bon steel. The laser system used is a 1500W CO2

laser. In all the experiments, the laser beam diameter
is set to 4 mm and beam moving velocity is kept
constant at 50 mm/s. To enhance laser absorption by
the workpiece, graphite coating is applied to the
irradiated surface. Typical samples of formed plates
are shown in Figure 2. A coordinate measuring
machine (CMM) is used to measure the coordinates
of the deformed plates.

3. Response Surface Methodology 
and Optimal Design

Response surface methodology (RSM) is a col-
lection of statistical and mathematical techniques

sign z z
i

k

si pi∑ −FH IK=1
c h

h
z z

k
i

k

si pi

=
∑ −
=1

2c h

d
W

i ≤
2

54

Journal of Manufacturing Processes
Vol. 4/No. 1
2002

Figure 2
Typical Laser-Formed Samples Using Scanning Schemes 

Shown in Figure 1



useful for developing, improving, and optimizing
process (Myers and Montgomery 1995).
Applications of RSM comprise two phases. In the
first phase, the response surface function is based on
a factorial design, approximated by a first-order
regression model [Eq. (4)], and complete with steep-
est ascent/descent search, until it shows significant
lack of fit with experiment data, or until there is no
direction of improved response. After reaching the
vicinity of the optimum, the second phase of the
response surface function is approximated by a
higher order regression function such as a second-
order one shown in Eq. (5).

(4)

(5)

where and are estimated
response and decision variable vectors, respectively,
� is a fitting error that is assumed to be norm-
ally distributed, and b0, , and

are coefficient scalar/vector/matrices determined
using the least-square regression. The model in Eq.
(5) is then differentiated with respect to the decision
variables to determine the optimum condition for the
forming process. As mentioned earlier, among the
design variables to be determined, the number of
laser scans, N, is an integer variable, which is not
appropriate for Eq. (5) and thus the branch-and-
bound method is employed (Taha 1987).

Suppose among n decision variables, q of them
are integers. The general idea of the method is to
first solve the problem as a continuous model, and
then generate a sequence of subproblems. The
process is repeated until each of the subproblems
can be easily solved.

The steepest line search starts with the initial
design points of q integer variables and n – q non-
integer variables. The next iteration starts by arbi-
trarily choosing a design point from one of the q
integer variables. The remaining q – 1 design points
of integer variables of the next movement are deter-
mined based on the coefficient from Eq. (4) and the

branch-and-bound method. After reaching the vicin-
ity of optimum, the response surface is approximat-
ed by a higher regression order with q integers deter-
mined from previous iterations and n – q non-integer
factors. At this stage, the problem can be solved as a
regular one with n – q continuous variables.

4. Desirability and Robust Design 
Optimization design may not accomplish the

desired result due to the influence of uncontrollable
noise and variation of the input factors. Therefore,
designs are sought that are not only optimal but also
robust (insensitive) to inevitable changes in the
noise and input factors. Robust design methods rep-
resent a systematic approach for finding the near-
optimum combination of design parameters, and yet
the design is insensitive to variation in both con-
trollable input variables and/or uncontrollable noise
factors. Taguchi introduced parameter designs with
inner and outer arrays and signal-to-noise ratio as
robust optimization criterion to identify factor set-
tings that minimize variation in performance
(Myers and Montgomery 1995). However, these
designs tend to have a large number of runs and
become inefficient relative to the amount of infor-
mation they provide. In the laser forming process,
the achievable accuracy of the bending angle is a
result of many different parameters. Hennige,
Holzer, and Vollertsen (1997) analyzed the effect of
variations in various variables on deformation in
laser forming using the well-known error propaga-
tion equation and gave a very good sense as to the
relative influence of these variations on deforma-
tion variation. But the analysis made no connection
with process design. 

Desirability-based robust design is a tool to find
controllable factor settings that optimize the objec-
tive yet minimize the response variation of the
design (Kraber and Whitcomb 1996, Derringer and
Suich 1980). It requires construction of a response
surface using a mathematical model [Eq. (5)]. The
transmitted variation of responses from input vari-
ables can thus be reduced by moving the optimal
solution to a flatter part of the response surface. The
variation transmitted to the response can be deter-
mined by the well-known error propagation equa-
tion, which is modeled by taking the partial deriva-
tives of the polynomial [Eq. (5)] with respect to the
decision variables.
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(6)

where is the model-predicted standard deviation
of the response, or known as propagation of error
(POE), is the variance of decision variable xi, is
the covariance between xi and xj, is the residual

variance, , and df is the residual degree 

of afreedom, which equals the number of response
values k minus the number of terms in the regression
model. To reduce variance in the response, POE [Eq.
(6)] should be minimized; therefore, it can be treat-
ed as an additional response built into the design
process. The simultaneous optimization of several
responses [in this case, y in Eq. (5) and in Eq.
(6)] is the essence of the desirability-based robust
design (Kraber and Whitcomb 1996, Derringer and
Suich 1980).

For each response , a desirability function 
Di( ) assigns a value between 0 and 1 to the possi-
ble values of , with Di( ) representing a com-
pletely undesirable value of and Di( ) repre-
senting the ideal response value. The individual
desirabilities are then combined using the geometric
mean, which gives the overall desirability D

(7)

where m is the number of responses. The maximum
of D represents the highest combined desirability of
the responses. Depending on whether a particular
response is to be maximized, minimized, or ass-
igned to a target value, different desirability func-
tions Di( ) are to be used.

Let Li, Ui, and Ti be the lower, upper, and target
values desired for response , respectively, where
Li � Ti � Ui. If a response is of the “target is best,”
its desirability function is expressed as:

(8)

where the exponents r and s determine how strictly the
target value is desired. If a response is to be minimized,
the individual desirability is instead defined as

(9)

where T represents a small enough value for 
the response.

Maximization of is equivalent to minimization
of – . As seen from Eqs. (5) and (6), is a con-
tinuous function of xi; it follows that Di and D are
piecewise, continuous functions of xi. The above
numerical optimization problem reduces to a gener-
al nonlinear problem with constraints. However, as
seen from Eqs. (7) to (9), the derivative of D is not
continuous. Therefore, direct search methods need
to be applied to find the optimal value of D. The
downhill simplex method (Miller 2000) requires
only function evaluations and is chosen in this study.
In an n-dimensional search space, it starts with an
initial simplex of n+1 vertices. It requires a compar-
ison of the objective function values at a limited
number of search points, specifically n+1 points, in
the n-dimension search space. An implementation of
the algorithm is Design-Expert® by Stat-Ease, Inc,
which is used in the paper.

5. Approach to Bending Angle
Attainment 

In the steepest ascent/descent search and RSM
process, a large number of experiments are required
to obtain bending angles under different conditions,
which is time consuming and costly and thus poses
a serious limitation to the method. If the total defor-
mation of a sheet generated by the parallel or con-
centric laser scans can be obtained by summing
deformations generated by these scans, a much
smaller number of experiments will suffice. In other
words, if deformations caused by scans at different
di or ri (Figure 1) can be considered independent of
each other, only experiments with single scanning
paths are needed. This hypothesis is supported by
FEM (to be explained in the subsequent section)
results shown in Figure 3, in which it is illustrated
that for a laser beam spot size of 4 mm, typical tem-
perature and compressive plastic strain rise is
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largely confined within the beam spot size. The
effect of temperature and plastic strain is negligible
outside the region. Therefore, when the spacing
between two adjacent irradiation paths di – di-1 (or
ri – ri-1) is sufficiently large, the development of the
bending angle can be assumed independent of one
another. Consequently, experimental results of sin-
gle scans are shown in Figure 4. The hypothesis of
independence will be further tested in the result
and discussion section.

Figure 4a, adapted from Cheng and Yao (2001a), is
for the square plate under different laser power levels
at a scanning velocity of 50 mm/s. The scanning was
done at y = 0 and the bending angle is assumed to be
the same if scanning is done at a non-zero y value. This
is appropriate because the plate size is relatively small.
Hsiao et al. (1997) reported that the amount of angu-
lar distortion is sensitive to the physical size of the
specimen, if the size is large. A line is fitted through
the data points to allow interpolation in between.
Figure 4b shows single concentric scan experimental
results of the circular plate at different radial positions
and power levels. As seen, the bending angle varies
with the radial position of the laser concentric scan-
ning path, ri. This is not the case for the square plate,
as explained above. This variation will be explained
shortly using Figure 5. FEM results are also super-
posed in Figure 4b and reasonable agreements are
seen. The results in Figure 4b are also fitted with a sur-
face as shown in Figure 4c to allow interpolation in
between. Because of the nonlinear and nonmonotonic
nature as shown in Figure 4b, a third-order least-
square surface is employed as seen in Figure 4c.

Figure 4b shows an interesting pattern in which
the bending angle first increases with the radial
position of laser concentric scanning path, ri, and
then falls when the scanning path is near the outer
edge of the quarter circle plate for a given laser
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Figure 3
Simulation Results Showing that Temperature and Compressive

Plastic Strain Rise Do Not Go Beyond the Extent of Laser Beam Size
(square plate, scanning path at y=0 mm, p=650 W, and 

beam spot size = 4 mm)
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Bending Angle Induced by a Single Scan

(a) Experimental results of square plate (Cheng and Yao 2001a); (b)
Experimental and simulation results of quarter-circle plate; and (c) a

third-order fitted surface based on data shown in Figure 4b
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power level. At about r = 65 mm, the angle is the
largest. A larger bending angle is indicative of
smaller geometric constraint because the laser power
is kept the same for scans at different radii. To help
explain the phenomenon, corresponding FEM
results are plotted in Figure 5. As seen in Figure 5a,
the maximum principal plastic strain on the scan-
ning path (shown in dotted lines), which is propor-
tional to the deformation at the location, first
increases until about r = 65 mm and then decreases.
It shows a similar pattern as the bending angle but
does not explain the pattern. Figure 5b shows the
bending angle variations with the in-plane angle � at
different radial positions. The variation is caused by,
among others, geometric constraints imposed espe-
cially by both edges (ends) of the scanning path,
which have been extensively dealt with previously
(Bao and Yao 2001). The percentage of bending
angle variation with in-plane angle �, which is
defined as (max-min)/max, are superimposed in

Figure 5a in solid lines. It is seen that the percentage
of bending angle variation decreases with the radial
position of the laser concentric scanning path, ri, to
about 65 mm and then increases. The larger the vari-
ation is, the larger the geometric constraints, and
thus the smaller the bending angle. When the radius
of the scanning path, ri, increases, the length of the
scanning path increases. As a result, the relative geo-
metric constraints decrease and thus the bending
angle increases until about r = 65 mm. When the
position of the scanning path moves further outward,
the bending angle decreases. This is because addi-
tional geometric constraints are brought about by the
encroached outer edge of the workpiece.

6. Numerical Simulation 
As seen in the preceding section, the FEM

results play a useful role in helping test hypotheses
(Figure 3), ascertaining experimental results
(Figure 4b), and helping explain observed phe-
nomena (Figure 5). In this section, governing rela-
tions underlying the FEM results are briefly out-
lined. 

The following assumptions are made. The work-
piece material is isotropic. Material properties such
as Young’s modulus, yield stress, heat transfer
properties, thermal conductivity and specific heat,
are temperature dependent. The heat flux FL of the
laser beam follows Gaussian distribution. No melt-
ing is involved and no external forces are applied in
the forming process. 

The temperature distribution of the workpiece
can be obtained by solving the heat conduction
equation. The associated boundary conditions of
the heat conduction equation are: z = H:

(Figure 1), where �abs is
the material’s absorbency and is the unit vector
normal to the surface pointing to the solid. All the
surfaces are subject to natural heat convection and
radiation.

Because no external forces exert on the faces of
the workpiece (z = 0 and H), the traction-free
boundary condition is assumed, namely .

The elastic strain can be expressed as 

where u is the displacement 

function. When Von Mises criterion is applied to the
plastic potential function, the flow rule can be 
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Figure 5
Simulation Results of Quarter-Circle Plate

(a) Principal plastic strain and percentage bending angle variation
along laser scanning path and (b) Bending angle variation along con-

centric laser path (p=650 W)
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expressed as , where s1, s2, 

and s3 are principal components of the deviatoric
stress tensor (Kobayashi 1989). With the introduc-
tion of effective stress and effective strain rate, 

can be expressed as 
,

where 

and are effective stress
and effective strain rate, respectively. The relation-
ship between deviatoric stress and plastic strain rate
therefore can be written as:

(10)

By combining the elastic strain rate, plastic strain
rate, and thermal strain rate components, the total
strain rate can be expressed as (Boley and Weiner
1997):

(11)

where G is shear modulus and 	 is Poisson’s ratio. 
In the square plate simulation, symmetry about

the x-axis is assumed; only half of the plate is simu-
lated. The symmetric plane is assumed to be adia-

batic. Two adjacent points in the middle of the sym-
metric plane are fixed to remove the rigid body
motion. All the nodes in the symmetric plane are
removed of freedom in y-direction. In the quarter-
circle plate simulation, three adjacent nodes near r =
0 are removed of freedom in all directions. The same
mesh model is used for the heat transfer analysis and
structural analysis. Commercial FEM software,
ABAQUS, is used to solve the thermal mechanical
problem. In the structural analysis, the 20-node ele-
ment type, C3D20, has no shear locking, no hour-
glass effect, and is thus suitable for a bending-defor-
mation-dominated process such as laser forming. To
remain compatible with the structural analysis, the
20-node element type, DC3D20, is used in the heat
transfer analysis. Figure 6 shows a typical FEM
result of five parallel scans at p = 650 W. The color
contour represents the y-axis plastic strain distribu-
tion at time t = 1.8 seconds.

7. Results and Discussions
The independence hypothesis described in section

5 is experimentally and numerically tested. As dis-
cussed, the hypothesis states that the total deforma-
tion of the workpiece generated by multiple irradia-
tion paths is the summation of deformations induced
by the paths, provided the distance between adjacent
paths is not too small. Figure 7 shows that the
hypothesis holds well under the conditions used. In
Figure 7a, square plates are irradiated by equally
spaced parallel laser paths, and the resultant defor-
mations are measured using CMM and indicated in
dots. On the same plot, bending angles of single
scans obtained from Figure 4a are summed to deter-
mine the total deformation shown in solid lines. As
seen, there is good agreement between the two. This
is indicative of the validity of the independence
hypothesis. In addition, note that the number of
paths N ranges from 3, 5, 8, and 10, and therefore
the independence holds at least for N = 10. For N =
10, the distance between adjacent paths is W/2/10 =
4 mm, and therefore both temperature rise and plas-
tic strain at the adjacent paths don’t overlap signifi-
cantly (Figure 3). FEM results for N = 3 and 5 also
show good agreements with experiments. Similar
results are shown in Figure 7b for the quarter-circle
plate, where four equally spaced concentric scan-
nings were carried out at r = 40, 50, 60, and 70. The
multiscanned plate is measured using CMM along

& & &

& &

e s
G

s

E
T

ij ij ij

ij ij

= + +

−F
H
I
K +

λ

δ υ σ δ α

1

2

1 2

& &

&

e s s T

s s T

ij
p

ij ij

ij ij

= =

− ′ ≥

λ κ

κκ

if 

and 

1

2
2 0

2 a f

& ,

&

e s T s T

s s T

ij
p

ij ij

ij ij

= < =

− ′ ≤

0
1

2

1

2
2 0

2 2if  or if 

and 

κ κ

κκ

a f a f

& & &ε ε ε= 2

3 ij ijc hσ = 3

2
s sij ijc h

&
&

λ ε
σ

= 3

2

&λ

d

s

d

s

d

s
d

ε ε ε λ1

1

2

2

3

3

= = =

59

Journal of Manufacturing Processes
Vol. 4/No. 1

2002

Figure 6
Typical FEM Result of Parallel Scanning of Square Plate 80×80×0.89

mm (half is shown due to symmetry). PE22 is plastic strain in 
yy direction (p=650 W, t=1.8 s, beam moving velocity 

is 50 mm/s, five scan paths).

3 2
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the in-plane angle � = 45°, and the measurement
result is shown in dots in the figure. On the same
figure, a line is drawn by summing the bending
angles of single scans at different radial positions
(Figures 4b and 4c). The good agreement between
the two indicates that the concentric scans can be
considered independent each other at least down to
a distance of 10 mm for the case.

The optimal and robust design methodology out-
lined in this paper is applied in four inverse design
cases. The first two deal with the square plates with
parallel laser scanning paths, and the other two deal
with the quarter-circle plates with concentric laser
scanning paths. The integer design variable problem
is dealt with in Case 1. To reduce the number of
design variables, a control function approach is
developed and discussed in Cases 2-4. As mentioned

in section 2, for all experiments and simulation,
laser scanning velocity is kept as v = 50 mm/s and
laser beam spot size is kept as Db = 4 mm.

7.1  Linear Case 1
In this case, the square plate is considered, and the

desirable shape (Figure 8a) is prescribed in terms of
the following process parameters: number of scan
paths N = 6 and laser power pi = p = 700 W. The scan
paths are equally spaced. The way the prescribed
shape is specified is to facilitate comparison of the
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Figure 7
Comparison of Experimental Multiscanned Generatrix Shape with
Prediction Based on Superposition of Single Scans (a) Square plate,
FEM results based on single scans included and (b) Quarter-circle

plate (error bars represent standard deviation of two to four samples;
N is number of equally spaced scanning paths, p=650 W)
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(a) Design evolution toward the prescribed shape and (b) Responses
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design result with the prescription. The task here is
to find power p and the number of scan paths N to
minimize the difference between the shape formed
using the found condition and that using the pre-
scribed condition [Eq. (3)].

Optimal Design
To apply RSM, an initial design point, N = 4 and

p = 620 W, is arbitrarily chosen. The corresponding
initial shape is shown in Figure 8a. A two-level fac-
torial design is conducted with half width 
N = 1
and 
p = 30 W. As outlined in section 5, bending
angles under the factorial design conditions are
obtained from interpolating the experimental results
shown in Figure 4a. To mimic the forming process
repeatability characteristics, normally distributed
random numbers are generated and added to each
bending angle value. The standard deviation of the
random numbers is chosen as the same as that shown
in Figure 4b in the form of error bars. These bend-
ing angles are used to determine corresponding
shapes of the generatrix, and the shapes in turn are
used to determine the objective function values h
[Eq. (3)]. The objective function values h are the
responses in the factorial design. 

A first-order regression model is fitted based on
the factorial design and the direction of the steepest
descent is determined from the coefficients of the
regression model. At each movement along the
steepest descent direction, the response obtained
from the regression model is compared with that
based on the experimental result (Figure 4a) to
examine if this model is still valid. The percentage
discrepancies of the comparison at the initial point
and at the first movement along the path are 0.42%
and 2.22%, respectively, which are considered to
indicate that the direction of steepest descent path is
valid at these points. The responses h at these points
are –1.316 and –0.928, respectively, according to
Eq. (3) and the consideration of the sign associated
with the equation. After the next movement along
the path (N = 6 and p = 664 W shown in Figure 8a),
however, the percentage discrepancy increases to
5.87%, which is considered to indicate that the
direction is no longer valid at this point. Hence,
another two-level factorial design is conducted
based on this point and a new steepest descent path
is calculated. The new initial point (N = 6 and p =
664 W) and the next point along the new path (N =
7 and p = 696 W) have responses h = �0.5 and 0.21,

respectively. The change of sign is clearly indicative
of “overshooting”; that is, the possible solution
shape is bent more than the prescribed shape, which
is also shown in Figure 8a. This indicates that the
optimum condition is in the vicinity of the last
movement and normally a three-level factorial
design needs to be considered.

In this case, however, the design variable N is sub-
ject to integer constraint and the solution must lie on
either N = 6 or 7. The branch-and-bound approach
discussed in section 3 is applied and for this two-
variable case it is quite straightforward. As shown in
Figure 8b, three-level single-factor (p) designs are
conducted separately at N = 6 and N = 7 and qua-
dratic models are fitted for each. The quadratic
equation for N = 6 is found as

h = 3.57 × 10-5p2 � 0.0393p + 10.02 (12)

Because the second-order model is fitted with three
points, it is an exact fit and thus the residual is zero.
Solving the equations for zero response gives opti-
mal solutions p = 701 W for N = 6 and p = 671 W
for N = 7, as shown in Figure 8b. This indicates that
multiple solutions are possible. An additional objec-
tive function, such as one that minimizes production
time, screens out the solution (p = 671 W for N = 7).
The optimization result (N = 6 and p = 701 W)
agrees very well with the prescribed value (N = 6
and p = 700 W). The optimization process toward
the prescribed shape is shown in Figure 8, which
includes prescribed shape, initial design, some inter-
mediate shapes, and final design.

Robust Design
In practice, the laser power output may fluctuate

slightly. To make the design more robust, that is,
insensitive to the variation in input variables, propa-
gation of error (POE) is calculated based on Eqs. (6)
and (14), and assumed power standard deviation �p

= 6W as

POE = 4.29 × 10-4p � 0.236 (13)

Because the residual term in Eq. (12) is zero, thus
the residual variance here is also zero. The response
h is scaled to a desirability function D1 ranged from
[0,1] according to Eq. (8) because the response
problem is of the “target is the best” type, where T1

= 0 (target), L1 is set as �0.15, and U1 is set as +0.15
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to ensure the robust design is not off the optimal
solution too much. The POE is also scaled to a desir-
ability function D2 according to Eq. (9) because the
POE problem is of the “minimization” type, where
T2 is set as 0.042 (for p = 650 W) and U2 is set as
0.068 (for p = 710 W) according to Eq. (13). The
overall desirability D is then expressed as the geom-
etry mean of D1 and D2 using Eq. (7). As seen in
Figure 9a, the overall desirability function D is a
continuous, nonlinear, piecewise function, and
therefore a direct search method, downhill simplex

search, is used to find the variable p that maximizes
the overall desirability. The maximum value of
desirability, 0.4, is found at p = 698 W, where the
POE value is lower than that at the optimal solution
(p = 701 W), and the response value is �0.003. At
the optimal solution, the desirability is about 0.33
and the response is obviously zero. The robust
design, therefore, balances between the response
and POE. Please note the value of overall desirabil-
ity remains zero until p reaches about 688 W, which
is associated with the L1 value of �0.15. This
means that all the solutions smaller than 688 W are
not desired because the responses below 688 W are
too far away from the desired response of zero. In
this case, the robust design does not differ much
from the optimal solution, but the design process is 
generally applicable.

Figure 9b shows the relationship among input
variable p with response, POE, and desirability
when the standard deviation in laser power �p is set
as 20 W. As seen, the robust solution moves further
away from optimization value 701 W to 696.7 W.
However, the maximum value of desirability reduces
to 0.36, compared with 0.4 in Figure 9a. This indi-
cates that as input variation increases, additional
sacrifice on the optimization part has to be made to
make the design robust. 

7.2  Linear Case 2 
In this case, the desired shape is prescribed in

terms of a generatrix that is a second-order polyno-

mial , as seen in Figure 10, 

and its curvature increases with y. It is obvious that
evenly spaced scanning paths are no longer appro-
priate, that is, di+1 � di � di � di-1, resulting in a
large number of design variables and making the
RSM-based optimal design less feasible. As seen
from Figure 10, however, the curvature of the given
profile decreases monotonically. Because the trend
of spacing between adjacent laser paths is closely
related to the curvature of the prescribed shape, the
following control function is proposed to relate all
di’s

(14)

where di specifies the position of the ith laser path,
m is the design variable to be determined, and N is
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Figure 9
Linear Case 1: Relationship of Response, POE, and Desirability
(a) Standard deviation in laser power ��p=6 W and (b) ��p=20 W
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the number of laser scan paths. In this case, N is set
as 7. The problem, therefore, becomes to determine
the value of laser power p and exponent m to achieve
the given profile. In an effort to keep the total num-
ber of design variables at a manageable level, the
power-law expression of Eq. (14) is envisioned to be
able to describe the trend that spacing di increases
with i, according to the desirable shape whose cur-
vature decreases with i. This may lose some gener-
ality, but if a large number of design variables is not
a concern for DOE, there will be no need to impose
Eq. (16), and all di’s can be treated as independent
variables. In this sense, the approach employed is
reasonably general.

The same process as in the previous case starts
with arbitrarily choosing an initial design at m = 1.2
and p = 650 W with half width of 0.2 and 30 W,
respectively, although there is no need to deal with
integer design valuables in this case. The response
function is found as

h = 1.576 � 5.81m + 0.0073p � 1.13m2 �
1.14 × 106p2 + 0.015mp (15)

As seen in Figure 11a, all points on the contour of
zero response represent optimal solutions. Thus,
another objective function, POE, is used to obtain
the most desired solution. 

Suppose the variations in m and p are 0.02 and 6
W, respectively, the POE is constructed using Eqs.
(6) and (17) as

(16)

in which the residual variance of 0.0725 is included.
h and POE are again scaled to desirability functions
ranging between [0,1] with h constrained between 
[�0.15, 0.15]. The overall desirability D is then cal-
culated. POE desirability in two-dimensional contour
and in three-dimensional form are plotted in Figure
11b to 11d. It is not surprising to observe that the
“ridge” of the overall desirability surface somewhat
coincides with the zero response contour. As seen
from Figure 11c, the most desirable value is 0.8013
corresponding to p = 692 W and m = 1.17. With this
m value and Eq. (14), laser path positions, di’s, are
calculated and plotted in the form of crosses in
Figure 10, along with the final robust solution and
prescribed shape. As expected, laser path locations
become coarser with decreasing curvature of the pre-
scribed shape. The profile based on the robust solu-
tion agrees with the prescribed profile. Note the pre-
dictions shown in Figures 11a and 11b represent the
response and POE values, respectively, correspond-
ing to the robust solution (p = 692 W and m = 1.17).

7.3  Circular Case 1
Similar to the first two cases, consecutive laser

scans are considered independent from each other.
Because the quarter-circle plate is formed by revolv-
ing a generatrix around the z-axis, the design prob-
lem becomes how to achieve a desired generatrix. In
this case, the prescribed shape is an arc with radius
of 360 mm (i.e., z = 360 � (360 � r2)0.5). The num-
ber of concentric scan paths is specified as N = 8.
The problem is to find the positions of each path,
ri’s, and the corresponding laser powers, pi = p. Note
that although the curvature of the desired arc is con-
stant, bending angle for a given power varies with
radial position, as seen in Figures 4b and 4c.
Therefore, ri’s cannot be equally spaced.
Furthermore, it is seen from the figures that bending
angle does not vary with radial position r monoton-
ically. With the observation and the need to limit the
number of design variables, a third-order polynomi-
al function

(i = 1, 2, ..., N = 8)

is proposed to relate ri’s in this case. Hence, the
inverse design problem is reduced to determine
power, p, and coefficients, m, n, and o.

The optimal design begins at an arbitrarily chosen
initial design point p = 600 W, m = 0.5, n = 2, and 
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Figure 10
Linear Case 2: Comparison of Robust Solution and Prescribed Shape
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o = �1 with half-width 
p = 20 W, 
m = 0.1, 
n =
0.1, and 
o = 0.1. The rest is the same as in Linear
Case 2. Figure 12a shows the prescribed shape and
robust designs. The solution shows a good fit with
the prescribed shape. The laser path position ri and
spacing between two adjacent paths (ri � ri-1) are
plotted in Figure 12c. As shown in the plot, (ri � ri-1)
increases as the scan path number increases, namely
as the radial position of the scan paths increases, and
then decreases slightly. The pattern matches that
shown in Figure 4b. This shows that, although the
prescribed shape has a constant curvature, spacing
between adjacent scan paths cannot be a constant
because the bending angle for a given power
changes with the radial position of the paths.

7.4  Circular Case 2
In this case, the prescribed shape is given as z =

1.2 × 10-4r2.5, which has monotonically increasing

curvatures with radial position (Figure 12b). The
number of scans is defined as N = 8. The problem
is to find the positions of each path and the corre-
sponding laser power. Similar to the previous case,
the distribution of the laser paths is determined by
a third order of polynomial function, 

(i = 1, 2, ..., N = 8). 

Therefore, the problem again becomes to determine
four decision variables, laser power p and coeffi-
cients m, n, and o.

The optimal design begins at an arbitrarily chosen
initial design point p = 640 W, m = 2, n = 2, and o =
�1 with half-width 
p = 20 W, 
m = 0.1, 
n = 0.1,
and 
o = 0.1. The rest is the same as in the previous
two cases. Figure 12b shows the prescribed shape
and robust design profile. The laser path positions
and spacing between adjacent paths are again plot-
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Figure 11
Linear Case 2

(a) Contour plot of response; (b) Contour plot of POE; (c) 2-D contour plot of desirability, the robust design has the highest desirability of 0.8013 for the
case; and (d) 3-D plot of desirability (“Predictions” shown in (a) and (b) represent response and POE values corresponding to the robust design).
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ted in Figure 12c. As seen, the spacing between
adjacent paths increases and then decreases, but the
pattern differs from that in Circular Case 1. This dif-
ference can be explained by the difference in curva-
ture of the prescribed shapes. In this case, the curva-
ture of the prescribed shape increases with radial

distance and thus the spacing between adjacent
paths needs to become smaller.

Laser forming experiments were conducted
under the condition determined by the robust
design. As seen in Figure 12b, the experimental
result shows a good fit at smaller radial positions
but some discrepancy at larger radial positions. This
is because the errors inevitably introduced during
the optimization process (e.g., using summation of
bending angles of single scans for multiscanned
sheets) get accumulated when the radial position
becomes large.

8. Conclusions
It is shown that the proposed optimal and robust

design schemes are feasible and effective for the
class of shapes considered. Integer design variables
are effectively dealt with by using standard methods
such as the branch-and-bound     method and by inte-
grating with RSM. The hypothesis of independence
of scans in multiscan forming is proven valid via
experiments and simulation for a certain range of
spacing between adjacent scanning paths. This sig-
nificantly reduces the need for a large number of
experiments. To reduce the number of design vari-
ables, the laser path positions are specified by poly-
nomials. The adequate order of such polynomials is
chosen based on the curvature pattern of the pre-
scribed shapes. 
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Figure 12
(a) Circular Case 1: prescribed shape with constant curvature; (b)

Circular Case 2: prescribed shape with varying curvatures, dots rep-
resent experimental results with error bars representing standard

deviation of three samples; and (c) Comparison of spacing between
adjacent paths for Circular Case 1 and 2

(a) 

z
(m

m
)

Radial position r (mm)

Pr
es

cr
ib

ed
 s

ha
pe

 c
ur

va
tu

re
 (1

/m
m

)

Prescribed shape
Curvature of 
prescribed shape
Robust solution

(b) 

z
(m

m
)

Radial position r (mm)

Pr
es

cr
ib

ed
 s

ha
pe

 c
ur

va
tu

re
 (*

10
-3

1/
m

m
)

Prescribed shape
Curvature of 
prescribed shape
Robust solution
Experimental result

Prescribed shape
z=1.2*10-4r 2.5

(c) 

La
se

r p
at

h 
po

si
tio

n 
(m

m
)

Scan path number

Sp
ac

in
g 

be
tw

ee
n 

ad
ja

ce
nt

 p
at

hs
 (m

m
)

Path position (Circular Case 1) 
Path spacing (Circular Case 1)
Path position (Circular Case 2)
Path spacing (Circular Case 2)

10

8

6 

4 

2 

0 

0 20 40 60 80

-0.010

-0.005

0.000

0.005

0.010

8

6

4

2

0  

0 20 40 60 80

4

3

2

1

0   

80

70

60

50

40

30

20

10

0  

0 1 2 3 4 5 6 7 8 9

10

8 

6

4 

z=360-(360-r 2)0.5



Kobayashi, S. (1989). Metal Forming and the Finite Element Method. New
York: Oxford Univ. Press.

Kraber, S.L. and Whitcomb, P.J. (1996). “Robust design-reducing transmit-
ted variation.” 50th Annual Quality Congress, Indianapolis, IN.

Magee, J.; Watkins, K.G.; and Hennige, T. (1999). “Symmetrical laser
forming.” Proc. of ICALEO, section F, pp77-86. 

Magee, J.; Watkins, K.G.; and Steen, W.M. (1998). “Advances in laser
forming.” Journal of Laser Applications (v10, n6), pp235-246. 

Miller, R.E. (2000). Optimization Foundations and Applications. New York:
John Wiley & Sons, pp352-360. 

Myers, R.H. and Montgomery, D.C. (1995). Response Surface
Methodology. New York: John Wiley & Sons.

Shimizu, H. (1997). “A heating process algorithm for metal forming by a
moving heat source.” Master’s thesis. Cambridge, MA: Massachusetts
Institute of Technology.

Taha, H.A. (1987). Operations Research. New York: Macmillan Publishing

Co., pp317-322.

Vollertsen, F. (1994). “Mechanisms and models for laser forming.” Proc. of

LANE ‘94.

Authors’ Biographies

Chao Liu is a PhD candidate in mechanical engineering at Columbia
University. Y. Lawrence Yao is a professor of mechanical engineering and
director of the Manufacturing Research Lab at Columbia University, where
his research group works on laser forming, laser shock peening, and laser
micromachining. Yao has a PhD from the University of Wisconsin-Madison. 

66

Journal of Manufacturing Processes
Vol. 4/No. 1
2002



67

Journal of Manufacturing Processes
Vol. 20/No. 2
2001


