
Available online at www.sciencedirect.com
www.elsevier.com/locate/imavis

Image and Vision Computing 26 (2008) 578–591
Multiclass cell detection in bright field images of cell mixtures
with ECOC probability estimation

Xi Long a, W. Louis Cleveland b,*, Y. Lawrence Yao a

a Mechanical Engineering Department, Columbia University, 220 Mudd., MC4703, New York, NY 10027, USA
b Department of Medicine at St. Luke’s Roosevelt Hospital Center and Columbia University, New York, NY 10019, USA

Received 12 September 2005; received in revised form 5 March 2007; accepted 11 July 2007
Abstract

To achieve high throughput with robotic systems based on optical microscopy, it is necessary to replace the human observer with
computer vision algorithms that can identify and localize individual cells as well as carry out additional studies on these cells in relation
to biochemical parameters. The latter task is best accomplished with the use of fluorescent probes. Since the number of fluorescence
channels is limited, it is highly desirable to accomplish the cell identification and localization task with transmitted light microscopy.
In previous work, we developed algorithms for automatic detection of unstained cells of a single type in bright field images [X. Long,
W.L. Cleveland, Y.L. Yao, A new preprocessing approach for cell recognition, IEEE Transactions on Information Technology in Bio-
medicine 9 (3) (2005) 407–412; X. Long, W.L. Cleveland, Y.L. Yao, Automatic detection of unstained viable cells in bright field images
using a support vector machine with an improved training procedure, Computers in Biology and Medicine 36 (2006) 339–362]. Here we
extend this technology to facilitate identification and localization of multiple cell types. We formulate the detection of multiple cell types
in mixtures as a supervised, multiclass pattern recognition problem and solve it by extension of the Error Correcting Output Coding
(ECOC) method to enable probability estimation. The use of probability estimation provides both cell type identification as well as cell
localization relative to pixel coordinates. Our approach has been systematically studied under different overlap conditions and outper-
forms several commonly used methods, primarily due to the reduction of inconsistent labeling by introducing redundancy. Its speed and
accuracy are sufficient for use in some practical systems.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In high throughput robotic systems that use optical
microscopy, it is essential to replace the human observer
with automatic cell recognition algorithms. A first step
towards this goal is to develop algorithms that can distin-
guish between ‘‘Cell’’ and ‘‘Non-cell’’ objects. This has
recently become possible for bright field images of
unstained cells in cultures using statistical learning tech-
niques [1]. Even the distinction between viable and non-via-
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ble cells in these images can be done with sufficient
accuracy for practical applications [2]. To proceed further
towards the goal of fully automated microscopy, it is of
critical importance to develop algorithms that can sort cell
objects into subtypes.

Recognition of cell subtypes is a multiclass classification
problem. Although binary classification has been well
developed, the problem of multiclass classification is still
an ongoing research issue and is not straightforward
[3,4]. Some binary classification methods, such as decision
trees, Bayes classifiers, and neural networks, can easily be
generalized to monolithic k-way classifiers to handle multi-
class classification tasks. However, in cases where these
classifiers are required to learn a very complex decision
boundary, they often produce unacceptable accuracy due
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to the limited representational capability of the learning
algorithms and the limited availability of training samples
[4,5]. This has led to a search for alternatives.

Since binary classification has been well developed, a
natural alternative to monolithic k-way classifiers is to
reduce the multiclass problem to a set of binary classifica-
tion problems. Intuitively, there are two straightforward
ways to accomplish this. The first possibility is to apply a
classifier between one class and the remaining k-1 classes
(called ‘‘1 vs. all’’ or ‘‘1 vs. rest’’ method). In the second
approach, a classifier is trained between each pair of classes
(called the 1 vs. 1 approach). In both cases, we are faced
with the possibility of indecisive or contradictory results
[3]. Furthermore, error analysis also shows that, in both
1 vs. all and 1 vs. 1 cases, poor results can be produced
by the ensemble of classifiers, even though the error rates
for individual classifiers are acceptable. For example, in
the 1 vs. all case, suppose that n binary classifiers are used
to output n hypotheses h1, h2, . . . ,hn, each with (fractional)
training error e1, e2, . . . ,en, respectively, Guruswami and
Sahai have proved that the worst-case training error for
the ensemble is minf

Pn
i¼1ei; 1g; and for randomized situa-

tions, the error is minfn�1
n

Pn
i¼1ei; 1g. In many practical

cases, these errors are unacceptably high [6].
This problem has led to more sophisticated strategies that

use a high degree of classifier redundancy. In these strategies,
a large number of independently constructed classifiers
‘‘vote’’ on the correct class for a test sample. The ‘‘bagging’’
technique, for instance, first generates multiple training sets
by sampling with replacement, and then trains a classifier on
each generated set [7]. ‘‘Boosting’’ can be viewed as a special
case of bagging where the sampling is adaptive, concentrat-
ing on misclassified training instances [8]. These approaches
have been proven to greatly reduce classification errors in
practice. However, available evidence suggests that they
can only reduce the variance errors that result from random
variation and noise in the learning sample and from random
behavior in the learning algorithm. Bias errors, which result
from systematic errors of the learning algorithm, can not be
reduced by these techniques [9]. In 1995, Dietterich and Bak-
iri developed the Error Correcting Output Coding (ECOC)
method [10], which has been shown to reduce both variance
and bias errors [9,11].

Recent work has shown that ECOC offers further
improvement in applications ranging from face verification
[12], text classification [13,14], and cloud classification [15]
to speech synthesis [16]. These promising results have led us
to explore the use of ECOC in automatic cell recognition
algorithms for high throughput robotic systems.

Unlike previous ECOC applications, in which ECOC
can only be used for classification purposes (i.e. predicting
class memberships for new samples), in a high throughput
robotic system, it is often necessary not only to identify the
class of a cell but also to determine its position relative to
pixel coordinates, since tracking and manipulation of cells
can be of critical importance. Prior ECOC methods there-
fore are not applicable to these systems.
In our previous work, which considered binary classifi-
cation problems, we successfully achieved both classifica-
tion and localization by a pixel patch decomposition
method. In this method, pixel patches from the original
images are mapped to ‘‘confidence values’’ that reflect the
estimated class probability. Patches containing centered
cells give the highest probability and thereby provide the
localization (see Section 3 for more details) [1,2]. Here,
we develop a new ECOC-based probability estimation
algorithm to enable the pixel patch decomposition tech-
nique to be used for both multiclass classification and
localization in images. To our knowledge, a problem of this
type has not been successfully resolved before. It should
also be pointed out that this new algorithm is useful not
only in a high throughput robotic system, but also in all
multiclass classification problems that need additional
probability information.

Currently, a popular approach for multiclass probability
estimation is proposed by Hastie and Tibshirani [17], In
this method, the multiclass probability estimation is
obtained by coupling results from pairwise (1 vs. 1) com-
parisons. In this paper, we generalize their approach to
cases where each binary problem involves comparison of
data from two ‘‘teams’’ (of classes) that are generated by
ECOC. The class probability of each individual class is esti-
mated through team comparisons. In one implementation
using this new algorithm with Support Vector Machines
(SVMs) [5,18] as base binary classifiers, we are able to sub-
type and localize cells in bright field images of cell mixtures
prepared by mixing cells from three different cell lines. The
experimental results suggest that our algorithm can reduce
classification errors to the point where some practical
applications are possible.

2. Materials and experimental conditions

Both microspheres and living cells were used for training
and testing classifiers. The microspheres were 25 lm-diam-
eter, red and 40 lm-diameter, green fluorescent polymer
microspheres from Duke Scientific (Cat. No. 36-5, 36-7).
The cell lines were K562 (human chronic myelogenous leu-
kemic cells, ATCC; Cat. No. CCL-243), CR10.PF.G cells
(obtained from D. J. Volsky) and EAT cells (Ehrlich Asci-
tes Tumor cells, ATCC; Cat. No. CCL-77). All cells were
grown at 37.0 �C in BM+1/2 TE1+TE2 +10% fetal calf
serum (FCS) [19]. For microscope observation, cells in cul-
ture medium were dispensed into polystyrene 96-well
microplates, which have glass bottoms that are 0.175 mm
thick. Cell viability was determined by nigrosine staining
[20] before and after microscope observation and was
greater than 95%.

To obtain an accurate training and testing standard, the
fluorescent probes for living cells (CellTracker� CAT. No.
C2925 and C34552, Molecular Probes) were used to label
CR10 (green, fluorescein bandpass) and EAT (red, propidi-
um iodide) cells. K562 cells were unlabelled. Under bright
field illumination, these labels are invisible.
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An Arcturus Pixcell II inverted microscope equipped
with a 20· planachromat objective (Numerical Aperture:
0.4) and a Hitachi model KP-D580-S1 CCD color cam-
era was used to obtain digitized images. For each micro-
scope field, a set of three images was acquired (Fig. 1).
One image was acquired with bright field illumination
and was used for SVM training or testing. Two auxiliary
fluorescence images were also acquired to distinguish dif-
ferent cell lines, which were either unlabelled or labeled
red or green.

Sixty sets of microscope images were acquired and used
in our cell detection experiments. In each experiment, two
subsets were extracted: one exclusively for training and
another exclusively for testing. Ambiguous objects showing
both red and green fluorescence were manually deleted.
The deleted objects were a very small percentage of the
total number of cells.

The computer programs were written in MATLAB
and C++. Our algorithm was implemented with the LIB-
SVM version 2.5 [21], which was compiled as a dynamic
link library for MATLAB. All experiments were imple-
mented in the environment of MATLAB Version
6.5.0.180913a (R13) supplemented with Image Processing
Toolbox Version 3.2. A standard PC equipped with an
Intel Pentium 4/2.8G processor and 256-MB RAM was
used.
Fig. 1. Typical sample images: (a) bright field image; (b) superposition of the
field and the green fluorescence image.
3. Overall framework for cell detection

In this section, an ECOC-based cell detection frame-
work for bright field images of cultured cells is presented.
The framework employs the multiclass classification and
probability estimation ability of our proposed algorithm
to analyze bright field images of cell mixtures. It permits
not only the identification of the desired cells but also gives
their locations relative to the pixel coordinates of the pri-
mary image. It also uses pixel patches as the primary input
data elements. Essentially, the software is taught to classify
pixel patches into different classes. Each class corresponds
to a single cell type, except for the larger class containing
all undesired objects (e.g. background, fragments of cells,
trash), denoted as ‘‘Non-cell’’.

The essential aspects of this framework are illustrated in
Fig. 2. Basically, we first train an ensemble of SVM classifiers
with ECOC. This is done with input vectors that are derived
from manually-extracted training patches and are repre-
sented as linear combinations of feature vectors derived in
Principal Component Analysis (PCA) preprocessing [1,22].

For each pixel p in the testing image (excluding pixels in
the margin around the edges), a pixel patch centered at that
pixel is extracted and represented in the same way as that in
training process. The probability that this extracted patch
belongs to each class is calculated by ECOC probability
bright field and the red fluorescence image; (c) superposition of the bright
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Fig. 2. Illustration of the overall multiclass cell detection process with ECOC probability estimation.
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estimation. For each class corresponding to a cell type, this
probability is then used as a ‘‘confidence value’’ C[p] 2 [0, 1]
in a ‘‘confidence map’’ for that cell type. Pixels in each con-
fidence map are the confidence values of their correspond-
ing patches in the original image and form ‘‘mountains’’
with large peaks representing a high probability of presence
of the corresponding cell type. A given peak in a confidence
map is compared with the corresponding peaks in the other
confidence maps. The confidence map with the highest
peak at that location gives the assignment of class member-
ship. Localization is provided by the pixel coordinates of
the highest peak. It should be pointed out that generating
a confidence map for the ‘‘Non-cell’’ class is unnecessary
in our case since localization of the non-cell objects is not
important for us.
Fig. 3. Coarse grid sea

Fig. 4. Fine grid searc
As has been mentioned above, in the ECOC
approach, binary classifiers have to be trained as the
base classifiers. The choice of base classifier can be arbi-
trary. In this work, we used Support Vector Machines
(SVM) [5,18] with the RBF kernel Kðx; yÞ ¼ e�ckx�yk2

.
The SVM classifier in our experiment is implemented
by modifying LibSVM [21]. The regularization parameter
C and the kernel parameter c are optimized using a two-
step ‘‘grid-search’’ method for each classifier [21]. In the
first step, a coarse grid-search with a grid size of 1 was
used to localize a Region of Interest (ROI) containing
the optimal values (shown in Fig. 3). In the second step,
a fine grid-search over the ROI with a grid size of 0.25
was used to give more precise values for C and c. The
result is shown in Fig. 4.
rch, grid size = 1.

h, grid size = 0.25.
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4. Extending ECOC for probability estimation

4.1. Brief summary of ECOC

As noted above, our cell identification and localization
algorithm requires mapping each pixel patch in the image
into a set of three ‘‘confidence values’’, which reflect the
estimated class probabilities. For this mapping, multiclass
probability estimation is needed. Since the standard ECOC
method simply assigns a class label to each sample (i.e.,
they do not output the conditional probability of each class
P(class = cjX = x) given a sample x), we need to extend it
to enable probability estimation. Our development of the
probability estimation algorithm requires a consideration
of some of the fundamental aspects of ECOC, which are
briefly described in this section. A detailed introduction
to ECOC can be found in [10,23].

The ECOC approach essentially proceeds in two steps:
training and classification. In the first step, the multiclass
classification problem is decomposed into training l binary
classifiers on l dichotomies of the instance space. Assuming
k classes and l classifiers, each such decomposition can be
represented by a coding matrix C 2 {�1,0,+1}k·l which
specifies a relation between classes and dichotomies. If
C(i, j) = +1 (or C(i, j) = �1) then the samples belonging
to class i (1 6 i 6 k) are considered to be positive (or neg-
ative) samples for training the jth (1 6 j 6 l) binary classi-
fier, fj. If C(i, j) = 0, then the samples belonging to class i

are not used in training fj. Thus a binary learning problem
is built for each column of the matrix. Each class i is
encoded by the ith row of the matrix C. This codeword is
denoted by Ci. To classify a new instance x, the vector
formed by the output of the classifiers F(x) =
(f1(x),f2(2) . . . , fl(x)) is computed and is assigned to the class
whose codeword Ci is closest to F(x). In this sense, the clas-
sification can be seen as a decoding operation:

Class of input x ¼ arg min
k

i¼1
dðCi; F ðxÞÞ ð1Þ
where d() is the decoding function.
Different decoding functions have been reported in the

literature. For example, Dietterich and Bakiri initially used
a simple Hamming distance [10]. In the case where margin-
based classifiers are used, Allwein et al. showed the advan-
tage of using a loss-based decoding function [23]. The loss-
based function is typically a non-decreasing function of the
margin and thus weights the confidence of each classifier
according to the margin. However, no formal results exist
that suggest the optimal choice of the decoding function.
In this paper, we tried two of the most commonly used
loss-based functions:

L1 norm based function dðCi; F ðxÞÞ ¼
Xl

j¼1

jCij � F jðxÞj

ð2Þ
and L2 norm based function dðCi; F ðxÞÞ ¼
Xl

j¼1

ðCij � F jðxÞÞ2

ð3Þ

Because the codewords come from an error-correcting
code, the ECOC method introduces redundancy into the
system by training decision boundaries multiple times.
Even if some of the individual classifiers were wrong for
a specific instance x, the ECOC method can still classify
x in the right class. ECOC, therefore, can greatly increase
the classification accuracy. It is worth noting that both 1
vs. all and 1 vs. 1 are special cases of the ECOC framework.
1 vs. all is equivalent to linear decoding with a coding
matrix whose entries are always �1 except diagonal +1
entries. 1 vs. 1 is also equivalent to Hamming decoding
with the appropriate coding matrix.

4.2. Extension of standard ECOC for probability estimation

In this section, we modify the standard ECOC method
to enable probability estimation. Our new algorithm is an
extension of the pairwise coupling method introduced by
Hastie and Tibshirani [17]. It should also be noted that,
while this work was in progress, Huang et al. independently
developed a very similar algorithm based on the same strat-
egy and formulated it as ‘‘Generalized Bradley-Terry
Model’’ [24]. To our knowledge, they have not applied
their algorithm to practical applications.

4.2.1. Hastie –Tibshirani method for pairwise coupling

The Hastie and Tibshirani’s pairwise coupling method
can be briefly described as follows. Assume that after train-
ing a classifier using the samples from class i (labeled +1)
and samples from class j (labeled �1), the pairwise
probability estimation for every class i and j (i „ j) is
rij(x). According to the Bradley–Terry (BT) model [24],
rij(x) is related to the class posterior probabilities pi =
P(class = ijX = x) (i = 1,2, . . .k):

rijðxÞ ¼ P ðclass ¼ ijclass ¼ i [ class ¼ j;X ¼ xÞ
¼ piðxÞ=ðpiðxÞ þ pjðxÞÞ ð4Þ

Note that pi is also constrained by
Pk

i¼1piðxÞ ¼ 1. There
are k � 1 variables but k(k � 1)/2 constraints. When k > 2,
k(k � 1)/2 > k � 1. This means that there may not exist pi

exactly satisfying all constraints. In this case, one must
use the estimation

r̂ijðxÞ ¼ p̂iðxÞ=ðp̂iðxÞ þ p̂jðxÞÞ ð5Þ

In order to get a good estimation, Hasti and Tibshirani
use the average Kullback–Leibler distance between rij(x)
and r̂ijðxÞ as the closeness criterion, and find the P that
maximizes the criterion.

lðP Þ ¼
X
i<j

nij rij log
rij

r̂ij
þ ð1� rijÞ log

1� rij

1� r̂ij

� �
ð6Þ

this is equivalent to minimizing the negative log-likelihood:
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lðP̂ Þ ¼ �
X
i<j

nij rij log
p̂i

p̂i þ p̂j
þ ð1� rijÞ log

p̂j

p̂i þ p̂j

� �
ð7Þ

where nij is the number of training samples used to train the
binary classifier that predicts rij.

This can be solved by a simple iterative algorithm:

1. Initialize P = [p1,p2, . . .pk] with random pi(x) > 0,
i = 1,2, . . .k.

2. Repeat (j = 1,2, . . . k,1,2, . . .) until convergence:
(a) Calculate corresponding r̂ijðxÞ ¼ piðxÞ=ðpiðxÞþpjðxÞÞ.

(b) Calculate P̂ ¼ p1; . . . ; pj�1;

P
i:i 6¼j

njirjiP
i:i 6¼j

nji r̂ji
pj; pjþ1; . . . ;

�
pk�

T.

(c) Update P ¼ P̂=
P

p̂i.

4.2.2. Generalizaion of Hastie–Tibshirani method

It has been mentioned above that pairwise coupling is a
special case of ECOC. With some generalization, Hastie
and Tibshirani’s pairwise strategy can be extended to
ECOC with any arbitrary code matrix C. A close look at
the ECOC code matrix reveals that it actually divides the
samples from different classes into two groups for each bin-
ary classifier: the ones labeled ‘‘+1’’ and the ones labeled
‘‘�1’’. In this sense, ECOC with any arbitrary code matrix
is equivalent to pairwise group coupling. Therefore we can
generalize Hastie and Tibshirani’s results to cases where
each binary problem involves data in two ‘‘teams’’ (two
disjoint subsets of samples), i.e. instead of comparing two
individuals, we can compare two groups that are generated
by ECOC and estimate the individual probabilities through
the group comparisons.

Assuming an arbitrary code matrix C, for each column i

of C, we have

riðxÞ ¼ P ðclass 2 Iþi jclass 2 Iþi [ I�i ;X ¼ xÞ

¼
P

class2IþpclassðxÞP
class2Iþ[I�pclassðxÞ

ð8Þ

where Iþi and I�i are the set of classes for which the entries
in the code matrix C(*, i) = +1 and C(*, i) = �1. If we
define

qi ¼
X

j2Iþi [I�i

pj; qþi ¼
X
j2Iþi

pj; q�i ¼
X
j2I�i

pj ð9Þ

Similar to pairwise comparison, we need to minimize the
negative log-likelihood

min
P

lðP Þ ¼ �
Xl

i¼1

ni ri log
qþi
qi

þ ð1� riÞ log
q�i
qi

� �
ð10Þ

where ni is the number of training samples of the binary
classifier that corresponds to the ith column of the code
matrix. Above equation can be solved by a slightly more
complex iterative algorithm listed below. This algorithm
is equivalent to a special case on probability estimation
of Huang et al.’s Generalized Bradley–Terry Model in
[24]. Since the convergence of Generalized Bradley-Terry
Model has been proven [24], the algorithm is also guaran-
teed to converge.

1. Initialize P = [p1,p2, . . .pk] with random pi(x) > 0,
i = 1,2, . . .k.

2. Repeat (j = 1,2, . . . ,k,1,2, . . .) until ol(P)/opi = 0,
i = 1, . . . ,k are satisfied.
(a) Calculate corresponding qþi ; q

�
i ; qi, i = 1,2, . . . l.

(b) Calculate P̂ ¼ p1; . . . ;½ pj�1;

P
i:j2Iþ

i

niri
qþ

i
þ
P

i:j2I�
i

nið1�riÞ
q�

iP
i:j2Iþ

i
[I�

i

ni
qi

pj;

pjþ1; . . . ; pk�
T.

(c) Update P ¼ P̂=
P

p̂i.
5. Experiments with artificial data

To gain insight into the factors that affect the clas-
sification accuracy of our algorithm, we have carried
out experiments with artificial 2D data generated by
the Matlab random functions. Unlike actual data vec-
tors that have high dimensionality (e.g. 39*39, see
below), the artificial 2D data vectors generate results
that can be graphically represented and intuitively
interpreted.

Four different sets of artificial data have been used
(Fig. 5(a–d)). Data set 1 represents a simple scenario, where
the classes are well separated. Data sets 2–4 represent pro-
gressively more difficult scenarios, with data set 4 having a
very large class overlap.

The artificial data sets used in this section were con-
structed as follows. We first constructed a 2D data set
which consists of four different multivariate normal distri-
bution classes. After creating the first data set, three differ-
ent data sets, each with the same covariance and sample
numbers but different mean vectors were also constructed.
Each class was given 300 samples. The covariance matrices
of the four classes were (same for all data sets):

r1 ¼
1:5 0:4
0:4 1:5

� �
, r2 ¼

3 0:1
0:1 4

� �
, r3 ¼

2 0:2
0:2 3

� �
and

r4 ¼
3 0:8

0:8 8

� �
. The mean vectors of the four classes

for each data set are summarized in Table 1.
5.1. Reconstruction of probability distribution from ECOC

probability estimation

To evaluate directly our proposed ECOC probability
estimation algorithm, we used it to estimate the known
probability distributions of the above artificial 2D data
sets. In this experiment, ECOC was implemented with a
sparse matrix that was selected from 10,000 randomly gen-
erated 4 · 10 matrices. To select the optimum matrix in the
set of 10,000, we calculated the minimum Hamming dis-
tance between all pairs of the rows for each matrix. The
matrix with the biggest minimum distance was chosen



Fig. 5. Data sets used in the simulation experiment. Class number: 4; Sample number in each class: 300; Class distribution: Normal distribution. The four
data sets have same covariance but different mean for each class. (a) Data set 1; (b) Data set 2; (c) Data set 3 and (d) Data set 4.

Table 1
Mean vectors used to generate artificial data for Datasets 1, 2, 3 and 4

l1 l2 l3 l4

Data set 1 ½ �3 �3 �T ½ 3 3 �T ½ 3 �3 �T ½ �3 3 �T
Data set 2 ½ �2:5 �2:5 �T ½ 2:5 2:5 �T ½ 2:5 �2:5 �T ½ �2:5 2:5 �T
Data set 3 ½ �2 �2 �T ½ 2 2 �T ½ 2 �2 �T ½ �2 2 �T
Data set 4 ½ �1:5 �1:5 �T ½ 1:5 1:5 �T ½ 1:5 �1:5 �T ½ �1:5 1:5 �T
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[21]. Since the four artificial 2D data sets have known dis-
tributions, the ideal probability distributions of the classes
can be easily calculated. Fig. 6 plots the ideal class proba-
bility of the samples in Data set 2 against their coordinates.
The ECOC-reconstructed class probability distribution is
shown in Fig. 7. As one can see from the figures, the recon-
structed probability distribution matches the ideal distribu-
tion very well.

Fig. 8 gives a quantitative evaluation of the mean square
error (MSE) of the ECOC probability estimation. This
result is shown in comparison with the result provided by
the pairwise coupling method proposed of Hastie and
Tibshirani [17]. As indicated in the figure, our ECOC algo-
rithm is superior to the pairwise coupling method for three
of the four test classes. Therefore, ECOC probability esti-
mation has a higher overall accuracy.

5.2. Comparison of extended ECOC with other methods

Using the above artificial 2D data sets, we systematically
compared the proposed ECOC probability estimation
method with other widely used approaches: (1) 1 vs.all;
(2) 1 vs. 1 (pairwise coupling by Hastie and Tibshirani);
(3) ECOC with Hamming decoding; (4) ECOC with L1-
Norm based decoding and (5) ECOC with L2-Norm based
decoding. We used randomly generated sparse code matri-
ces as described in Section 5.1 for all ECOC-based meth-
ods. For inconsistent labels (ties and contradictory votes),
we adapted the strategy described in [3] and randomly
chose labels for them. Results are shown in Fig. 9. As
expected, ECOC-based methods are generally superior to
non-ECOC approaches, i.e. 1 vs. all and 1 vs. 1. Even
within ECOC-based methods, the extended ECOC with
probability estimation method produces the highest



Fig. 6. Ideal class probability distribution of Data set 2.

Fig. 7. Class probability distribution of Data set 2, estimated by our ECOC probability estimation method.
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classification accuracy. Finally and most interestingly, all
candidate methods perform very well on Data set 1, which
represent a very simple case. However, as the scenario gets
more and more complex, ECOC-based methods show a
greater advantage over other approaches.

We hypothesized that the superiority of ECOC methods
was largely due to the fact that these methods generated
more decision boundaries, which can greatly reduce incon-
sistent labeling areas, i.e. areas in which sample points can
not be consistently labeled using the majority voting strat-
egy. To verify this hypothesis, the decision boundaries of
different candidate methods were plotted and compared
(Fig. 10). Fig. 10(a) and (b) show decision boundaries of
Data set 1 that are generated by the 1 vs. all and ECOC
probability estimation method, respectively. Fig. 10(c)
and (d) show those of Data set 4. One can see that although
there exist many areas with inconsistent labeling in
Fig. 10(a), most areas are very close to class interfaces.
Since there is little overlap in Data set 1, few sample points
fall into these areas. Therefore, 1 vs. all method works
almost as well as ECOC probability estimation, which dra-
matically eliminates the inconsistent labeling areas (Fig. 10
(b)). On the other hand, since there is a large overlap in
Data set 4, a great proportion of the sample points fall into
the inconsistent labeling areas when the 1 vs. all method is
used. In this case, ECOC probability estimation outper-
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formed the 1 vs. all method by a very large margin. Our
hypothesis is very consistent with the experimental results
shown in Fig. 9.

6. Experiments with bright field images of living cells

In this section, we evaluate quantitatively the extended
ECOC-based cell detection method for bright field images
of cell mixture prepared by mixing cells from three different
cell lines. The overall framework of this approach has been
described in Section 3. In what follows, the detailed exper-
iment is described in steps. The experimental result is also
quantitatively analyzed.
6.1. Pixel patch extraction and construction of preclassified

training set

Since individual cells typically occupy only a small per-
centage of total image area, it is advantageous to decom-
pose an image using pixel patches that just large enough
to contain the largest cells in the image. In actual experi-
ments, 39 · 39 pixel patches centered at all possible loca-
tions in the 640 · 480 microscope image were extracted
(except in the 20-pixel margin around the edges). Our
experiments indicate that performance is not very sensitive
to small variations in patch size, e.g. a patch size of 37 · 37
produced similar results (data not shown). Since many
locations in the image are uniform background, a ‘‘mask’’
was created to exclude these patches. Essentially, the
‘‘mask’’ eliminated all pixel patches whose average pixel
intensities were below a user-chosen threshold.

A training set was created with the aid of an interactive
program that displays the digitized microscope images and
allows a user to select the locations of cell centers with a
mouse cursor after manual comparison of bright field
and fluorescence images. For each cell type, the pixel
patches extracted from the selected cell locations were pre-
processed by PCA [1,22] and used as input vectors of that
class. The pixel patches in the ‘‘Non-cell’’ class were then
generated automatically by extracting all the pixel patches
whose centers were r P 8 pixels away from any of the man-
ually selected cell locations. The value of r was empirically
chosen in relation to the sizes of cells and pixel patches.
PCA preprocessing was used to reduce dimensionality to
10 for all input vectors. After all input vectors are prepro-
cessed, each attribute of the PCA-preprocessed vectors was
linearly scaled to the range [�1,+1]. The main advantage
of scaling is to avoid computational difficulties and to
avoid the dominance of attributes with greater numeric
ranges over those with smaller numeric ranges [21]. Finally,
the classes were labeled with ordinal numbers.

6.2. ECOC training

We followed the procedure described in the simulation
experiment and used randomly generated sparse code
matrices for all ECOC-based methods in this section. For
each binary SVM classifier, the parameters are indepen-
dently optimized following the aforementioned two-step
grid search procedure. During the process of binary classi-
fier training, the Compensatory Iterative Sample Selection
(CISS) algorithm [2], a new SVM training procedure which
we developed previously, was employed to address the
imbalance problem caused by the large ‘‘Non-cell’’ sample
set. This algorithm maintains a fixed-size ‘‘working set’’, in
which the training samples are kept balanced by iteratively
choosing the most representative training samples for the
SVM. These samples are close to the boundary and are
therefore more difficult to classify. This scheme can make
the decision boundary more accurate, especially when
applied to difficult scenarios.



Fig. 10. Examples of decision boundaries generated by different methods on Data sets 1 and 4. (a) 1 vs. all on Data set 1; (b) ECOC probability estimation
on Data set 1; (c) 1 vs. all on Data set 4; (d) ECOC probability estimation on Data set 4.
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6.3. Identification and localization of living cells in bright

field images

In order to examine the effect of our algorithm on
images with different levels of complexity, three different
scenarios were created. In Scenario 1, both red and green
fluorescent microspheres were used as two types of model
cells and mixed with the K562 cells. Since the microspheres
have obviously different size, color and texture from living
cells, this scenario represents a very simple case. Scenario 2
is more complex since it is the mixture of only one type of
microspheres (red) and cells from two cell lines (K562 and
CR10.PF.G). Scenario 3 represents the most complex case
where three kinds of living cells (K562, CR10.PF.G and
EAT) were mixed without the addition of any micro-
spheres. Typical images from these three scenarios are
shown in Fig. 11. For each scenario, there is a total of 4
classes: one for each of the desired objects (microspheres
or cells) and one for all objects that are neither cells nor
microspheres (the ‘‘non-cell’’ class).
An ensemble of SVM classifiers was trained and tested
on each scenario. For each ensemble, testing samples were
from the same scenario as the training samples. However,
none of the samples used for training were used for testing.

After training, we first tested the classifier ensembles on
manually extracted pixel patches. This is done with three
testing sets. Each set has 2000 manually extracted pixel
patches from one scenario. Testing set 1 consisted of pixel
patches of 500 K562 cells, 500 green fluorescent micro-
spheres, 500 red fluorescent microspheres and 500 back-
ground from Scenario 1. Testing set 2 consisted of pixel
patches of 500 K562 cells, 500 CR10 cells, 500 red fluores-
cent microspheres and 500 background from Scenario 2.
Testing set 3 consisted of pixel patches of 500 K562 cells,
500 CR10 cells, 500 EAT cells and 500 background from
Scenario 3. The classification accuracy is shown in compar-
ison with other candidate methods in Fig. 12. It should be
pointed out that, in this case, we are actually able to com-
pare our new ECOC algorithm with some standard ECOC
methods such as hamming, L1 and L2 based decoding



Fig. 11. Sample images for living cell experiment. (a) Scenario 1: mixture of 2 types of microspheres and 1 type of cells; (b) Scenario 2: mixture of 1 type of
microspheres and 2 types of cells; (c) Scenario 3: mixture of 3 types of cells.
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because the pixel patches have been manually extracted
and therefore no localization is required.

The classifier ensembles were also applied in combina-
tion with the pixel patch decomposition method to whole
microscope images (640 · 480). Fig. 13 shows the confi-
dence maps for Fig. 11(c). The range of the confidence
value ([0, 1]) in the confidence maps has been linearly scaled
to [0,255] for grayscale representation. In Figs. 14–16, the
cell and microsphere positions detected are denoted by dif-
ferent symbols (diamond, square and cross, one for each
class) in the image.

Statistical cell detection results for whole microscope
images in Scenarios 1, 2 and 3 are summarized in Figs.
17–19, respectively. For each scenario, ten testing images
(640 · 480) were used. We employed a ‘‘Free-response
Receiver Operating Characteristics’’ method (FROC) [25]
with the average false positive (FP) number of all cell types
in each image and the average sensitivity (true positive per-
centage, i.e., the percentage of cells that are identified cor-
rectly) of all cell types as performance indexes. As
described above, the cell positions are identified as ‘‘peaks’’
of the ‘‘mountains’’ in the confidence maps. This requires a
user-defined threshold for the definition of ‘‘peak’’. The
FROC curve plots the relationship of false positives and
sensitivity as a function of the threshold (not explicitly rep-
resented in the plot). In a practical application, a suitable
threshold can then be selected to achieve the required
behavior. Generally speaking, the bigger the area under
the curve, the better the result is. A total of three methods
were compared in the experiment: (1) 1 vs.all; (2) 1 vs. 1 by
Hastie and Tibshirani; (3) ECOC with probability estima-
tion. It should be noted that other standard ECOC meth-
ods are not applicable here since they can not provide
information needed for localization.



Fig. 13. Confidence maps for Fig. 11 (c). (a) Confidence map for CR10 cells; (b) confidence map for EAT cells; (c) confidence map for K562 cells. The
confidence values are linearly scaled to 0–255 for display.

Fig. 14. Detecting result of the image in Scenario 1 using SVM with
ECOC probability estimation. The positions detected are denoted by black
symbols in the image. Diamond: green fluorescent microspheres; Square:
red fluorescent microspheres; Cross: K562 cells.

Fig. 15. Detecting result of the image in Scenario 2 using SVM with
ECOC probability estimation. The positions detected are denoted by black
symbols in the image. Diamond: CR10 cells; Square: red fluorescent
microspheres; Cross: K562 cells.
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Results with both manually and automatically extracted
pixel patches show that for Scenario 1, a very easy case, all
methods produce very good results. For Scenario 2, where
the images are more complex, our ECOC probability esti-
mation method (and other ECOC-based methods) starts
to show some advantage. A much greater advantage is seen
in the very difficult case represented by Scenario 3. For
example, in Scenario 3, if the average false positive accep-
tance number in each image is set at 1, ECOC probability
estimation achieves a sensitivity of 84.5%, which is 4 per-
centage points greater than that of 1 vs. 1, and 15 points
greater than that of the 1 vs. all approach. The result clo-
sely parallels that obtained in the simulation experiments
with artificial data as shown in Fig. 9.

As noted previously, our results with the artificial data
shown in Figs. 9 and 10 suggest that ECOC-based methods



Fig. 16. Detecting result of the image in Scenario 3 using SVM with
ECOC probability estimation. The cell positions detected are denoted by
white symbols in the image. Diamond: CR10 cells; Square: EAT cells;
Cross: K562 cells.
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Fig. 17. FROC plots of different candidate methods when applied to
Scenario 1: (1) 1 vs.all; (2) 1 vs. 1 by Hastie and Tibshirani; (3) ECOC with
probability estimation. The testing set includes 10 images.
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Fig. 18. FROC plots of different candidate methods when applied to
Scenario 2: (1) 1 vs.all; (2) 1 vs. 1 by Hastie and Tibshirani; (3) ECOC with
probability estimation. The testing set includes 10 images.
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Fig. 19. FROC plots of different candidate methods when applied to
Scenario 3: (1) 1 vs.all; (2) 1 vs. 1 by Hastie and Tibshirani; (3) ECOC with
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can greatly reduce the inconsistent labeling by introducing
redundancy, and therefore can partition the sample space
more accurately than other methods. The experimental
results with living cells described in this section add further
support to this claim.

It should also be noted that a close inspection of results
yielded by our algorithm suggests that it can distinguish
between different cell lines according to the subtle differ-
ence in the cell appearance, similar to a human observer.
For example, to a human observer, the CR10 cells in the
testing images are relatively small, and are rough-looking
in texture. The K562 cells and the EAT cells are about
the same size. However, the edge and texture of the K562
cells are slightly smoother than those of EAT cells. Our
experimental results suggest that our algorithm can actu-
ally make these subtle distinctions, and thereby emulate a
human expert quite well.
With regard to the processing speed, when our current
method is used with a 39 · 39 pixel patch, a 640 · 480
image requires a processing time of 5–15 min, depending
on the number of objects present in the image. However,
as yet, optimization of speed has not been attempted.
7. Conclusion

An extended ECOC algorithm for multiclass classifica-
tion has been described. Unlike prior ECOC methods,
which only assign class labels, this algorithm also calculates
class probabilities for each sample. This extension in con-
junction with a strategy developed in our previous studies
not only facilitates assignment of class membership but
also permits localization of identified objects relative to
pixel coordinates. Our algorithm therefore makes possible
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both subtyping and localization of unstained cells in bright
field images of cell mixtures. Our extended ECOC strategy
has been shown to be superior to several other currently
existing approaches, especially for complex scenarios. The
speed and accuracy of our multiclass cell detection frame-
work suggest that it can be useful in some systems that
require automatic subtyping and localization of cells in cell
mixtures.

In this study, our goal has been focused on exploring the
use of ECOC in a multiclass classification and localization
system. The probability estimation ability we added to pre-
vious ECOC methods was solely used in combination of
the pixel patch decomposition method to provide localiza-
tion information. This extended algorithm retains the clas-
sification accuracy of pre-existing ECOC methods. In fact,
our experiments suggest that there is only slight difference
between the performance of our new algorithm and that
of other ECOC-based algorithms (see Figs. 9 and 12).
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