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A New Preprocessing Approach for Cell Recognition
Xi Long, Student Member, IEEE, W. Louis Cleveland, and Y. Lawrence Yao

Abstract—In this paper, we describe a novel strategy for com-
bining fisher’s linear discriminant (FLD) preprocessing with a
feedforward neural network to classify cultured cells in bright
field images. This technique was applied to various experimental
scenarios utilizing different imaging environments, and the results
were compared with those for the traditional principal component
analysis (PCA) preprocessing. Our FLD preprocessing was shown
to be more effective than PCA due in large part to the fact that FLD
maximizes the ratio of between-class to within-class scatter. The
new cell recognition algorithm with FLD preprocessing improves
accuracy while the speed is suitable for practical applications.

Index Terms—Cell recognition, fisher’s linear discriminant,
neural networks, principal component analysis.

I. INTRODUCTION

RECENT progress in the development of methods for
molecular genetic analysis (e.g., RT-PCR, microarrays)

has brought sensitivities to the level where single cells can
be analyzed [1]. To carry out single-cell-level assays on a
significant numbers of cells, high-throughput robotic systems
are needed. These systems require identification of cultured
cells (often in bright field images) for micromanipulation and
subsequent molecular analysis. Identification of cultured cells
in bright field images is a difficult task. The difficulty arises
from multiple factors such as the variability of cell size and
morphology, the presence of “trash,” as well as variations in
microscope parameters. Traditionally, identification of cells is
done by experienced human observers. However, the use of
human observers represents a severe impediment to the devel-
opment of high-throughput robotic systems. Therefore, there is
a major need for algorithms that permit automatic recognition
of cells in bright field images.

With regard to automatic cell recognition, the method of
combining “pixel patch” decomposition and artificial neural
network (ANN) classification has recently begun to be ex-
plored and is considered advantageous over traditional image
processing techniques because it can largely eliminate end-user
programming and can accommodate variations in cell type and
other conditions with training [2]–[5]. This is especially impor-
tant for biologists, who may have minimal image processing
and programming skills. Powerful statistical data processing
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techniques have frequently been used in preprocessing to
generate abstract representations that are better suited for sub-
sequent neural network analysis. For example, Nattkemper et
al. applied principal component analysis (PCA) in evaluation
of fluorescence microscopy images of cells [3]–[5]. However,
most existing applications are successful in dealing with im-
ages in which nuclei, stained with a fluorescent probe, have a
characteristic color and are relatively uniform in size and shape.
Bright field images of unstained cells represent a more difficult
challenge which requires a more sophisticated technique.

In this study, a novel cell recognition approach based on
feedforward neural networks has been developed. We exploited
the advantages of fisher’s linear discriminant (FLD) over PCA
as a preprocessing step for a feedforward neural network and
adapted a novel strategy to make possible the use of FLD
preprocessing. It was found that FLD in combination with
feedforward neural networks was more effective than PCA
and gave performance that was adequate for use in a practical
robotic system for single-cell-level molecular analysis.

II. AUTOMATIC RECOGNITION OF CELLS IN IMAGES

A. Recognition Process

We used a “pixel patch” strategy similar to that described
in [3]–[5]. The process involves two stages: preprocessing and
classification. The major task of preprocessing is to derive a
representation of cells which makes subsequent classification
computationally effective and insensitive to environmental
changes by providing the classifier only with information
essential for recognition. In the classification stage, a neural
network is trained to determine if a pixel patch contains a
centered cell body. This is done with pixel patches represented
by feature vectors derived in preprocessing.

As illustrated in Fig. 1, cells in a digitized microscope image
are detected in the following steps: First, for each pixel in the
microscopic image, a pixel patch which consists of its
neighborhood centered at that pixel is extracted and mapped to a
confidence value by the classifier, where the size

can be adjusted to accommodate cell size ( was used
in our experiments). After all the pixels are processed, a new
image, called a confidence map, is created. Pixels in the con-
fidence map are the confidence values of their corresponding
pixel patch in the original microscope image and form “moun-
tains” with large peaks that represent cell positions. The cell
positions can then be easily found by identifying local maxima
in “mountains.” To increase speed (this procedure is optional),
patches clearly indicating background, i.e., patches with average
pixel intensities below a user-defined value (often determined
by a simple histogram), are not analyzed.
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Fig. 1. Illustration of the recognition process.

B. A Novel FLD Preprocessing Strategy

Fig. 2(a) shows a typical learning set used for deriving the
representation of cells. This set was manually selected from the
digitized microscope images. The learning set is composed
of two subsets ( ). contains patches of
centered cells and is labeled “Cell.” All patches in belong
to a single class. is labeled “Non-cell.”

Each pixel patch in the learning set is treated as a
point(vector) in an dimensional image space. Con-
sidering the complexity and vastness of this image space,
statistical data processing techniques, such as PCA and FLD,
are employed to reduce it to a subspace with much lower
dimensionality.

PCA has been widely used as preprocessing technique in
combination with ANNs [3]–[5]. However, it is known that PCA
preprocessing only considers the total variation of the whole
learning set and therefore maximizes both the between-class
variation, which is useful for classification, and the within-class
variation, which ideally should be minimized. An alternative
technique is FLD, which considers not only between-class vari-
ation but also within-class variation, and maximizes the ratio of
between-class variation to within-class variation [7].

It should be noted that when PCA is used in the preprocessing
step to reduce the dimension of the initial feature space, there
is no restriction on the dimension of the resulting subspace.
Whereas, when FLD is used, one must reduce the dimension
of the resulting subspace to no more than , where is the
number of classes [7]. In our case, where only one type of cell
is present, there are only two classes: “Cell” and “Non-cell.”
Therefore, if FLD preprocessing is directly used, the resulting

Fig. 2. Sample cell patches in the learning set. All patches are sized 25� 25
pixels. (a) Original learning set. (b) A novel strategy that makes possible the use
of FLD: factoring the “Non-cell” class into subclasses.

subspace can only be one-dimensional, which is inadequate for
a complex pattern recognition problem like cell recognition.

We have developed a novel strategy to enable the use of FLD.
To our knowledge, this strategy has never been used previously.
The key idea of this strategy is to treat the cell recognition as
a multiclass problem in the preprocessing stage. It can be done
by dividing the “Non-cell” class into multiple subclasses. This
is possible because the “Non-cell” class contains a diverse set
of cell fragments and noncell objects. Factoring this class into

subclasses that are reasonably homogeneous makes the total
number of classes equal to (“Non-cell” classes “Cell”
class). The dimension of the subspace produced by FLD pre-
processing can now be as high as . The above
principle is illustrated by the example shown in Fig. 2(b), where
the “Non-cell” class is divided into ten subclasses. Classes 1–8
contain a specific fraction of a cell. Pixel patches in class 9
are almost blank (i.e., background) and class 10 includes pixel
patches with multiple fragments of different cells. This “fac-
toring” of the “Non-cell” class into subclasses makes the use
of FLD a practical possibility, since the total class number is
now 11 and the dimension of the feature space after FLD pre-
processing can therefore be as high as 10. An additional ben-
efit of our strategy is that it reduces variation within individual
“Non-cell” subclasses. This reduction of within-class variation
is in addition to that which derives from the inherent ability of
FLD to reduce within-class variation.

C. Classification

The classifier we used in this paper is a feedforward ANN. It
has been widely used and proven to be a powerful tool for clas-
sification tasks. The ANN uses the input/output (I/O) mapping
learned from a set of training samples to generalize to data not
“seen” before. The training of an ANN involves gradually mod-
ifying the synaptic weights according to the back-propagated
output error for each sample until the desired average responses
are obtained on the entire set.

It is known that the capacity for generalization greatly de-
pends on the structure of the neural network [8]. Generally, more
neurons in the hidden layers give the system more capacity to
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partition the data. However, if the network has too many neu-
rons, it will learn insignificant aspects of the training set and
lose its generalization ability, a phenomenon termed overfitting.
A rule of thumb is to obtain a network with the fewest possible
neurons in the hidden layer. We employed an empirical method
[9] to optimize the neuron numbers in the hidden layers. The
training results of our ANNs are shown in Section III-B.

III. RESULTS AND DISCUSSION

A. Image Acquisition

Our experiment has used images of cultured cells as well as
images of polymeric microspheres as models of cells. The mi-
crospheres were 25- m-diameter, red Fluorescent Polymer Mi-
crospheres from Duke Scientific (Cat. no. 36-5). The cells used
were K562 chronic myelogenous leukemic cells (ATCC; Cat.
No.CCL-243) grown at 37.0 C in
fetal calf serum (FCS) [6]. Cells and microspheres in culture
medium were dispensed into polystyrene 96-well microplates.
Images were taken with an Olympus Model-CK inverted micro-
scope using a 20 planachromat objective.

B. ANN Optimization and Training

In order to train and optimize the neural classifier, a set of
1700 I/O pairs ( , ) was cre-
ated by projecting the learning set to linear subspaces using
both PCA and FLD. Accordingly, the set was also composed
of two subsets . The positive subset

consisted of feature vectors computed from the
pixel patches in , together with the target output classifi-
cation value . The other subset
consisted of feature vectors computed from pixel patches
in and the target output value of the classi-
fier. This set was further split into a training set of 1400 samples
and a validation set of 300 samples. The training set was ex-
clusively used to modify the weights and the validation set was
exclusively used to estimate the generalization ability.

Besides the input layer, three layers were used in our exper-
iment: two hidden layers, and one output layer. The hyperbol-
ical tangent sigmoid function was used as the transfer function
throughout the network. The optimal number of neurons in the
two hidden layers was estimated by independently changing the
number of hidden neurons in each layer, and evaluating the gen-
eralization properties of the ANN on the validation set at each
step as described in [9]. To avoid entrapment in a local error
minimum, every training session was repeated five times and
the best weights were used for each number of hidden neurons.

Fig. 3 illustrates the generalization properties of the ANN for
different numbers of neurons in the first layer, while keeping
the size of the second hidden layer constant at five neurons. The
mean squared error was plotted versus the number of neurons.
The error rate improved as the number of hidden neurons was
increased, but leveled out at around 40 neurons when prepro-
cessed by PCA and 37 neurons by FLD. The experiment was re-
peated with the number of neurons in the second layer changed
from 1 to 10 and similar but worse results were obtained (not
shown). Based on above results, we chose 40 neurons for PCA
preprocessing and 37 for FLD preprocessing in the first hidden

Fig. 3. Effect of neuron number in the first hidden layer on the generalization
properties of the ANN. The size of the second hidden layer was kept constant
at five neurons.

layer and five neurons in the second hidden layer for our sub-
sequent studies. Similar procedures were also used during the
microsphere experiments (data not shown).

C. Microsphere Experiments

We first used polymeric microspheres as models of cells. The
microspheres are very uniform in size, shape, and color and are
stable over time. These properties facilitate experimental repro-
ducibility and make it possible to create ideal scenes in which
critical factors can be individually isolated and well controlled.
Both PCA and FLD preprocessing were systematically studied
under various conditions of focus, illumination, object size, and
image noise. In all microsphere experiments, recognition was
performed as described in Section II. For FLD preprocessing,
the dimensionality was reduced to 10. For PCA preprocessing,
results are shown when both 10 and 20 principal components
were used since it has been suggested that more principle com-
ponents can improve performance [7].

1) Focus Variation: In order to quantify the effects of focus
variation, we created four image groups at different focal
planes relative to the microsphere equatorial plane, with all
other conditions unchanged: a) Focused: the focal plane is at
the equator of the microsphere (i.e., 12.5 m above the sup-
porting surface); b) 12.5 m: the focal plane is at the supporting
surface; c) 25 m: the focal plane is 25 m below the equator;
and d) 37.5 m: the focal plane is 37.5 m below the equator.
Typical sample images are shown in Fig. 4. Two experimental
schemes were performed on these images. In Scheme 1, each
method was trained on the first group and then tested on all
groups. In Scheme 2, each method was trained on the first and
third group and then tested again on all groups: the test on the
second group was an interpolation test and on the fourth group
was an extrapolation test (results shown in Fig. 5).

2) Illumination Variation: To evaluate the effects of illumi-
nation variation, images were taken under five light intensity
levels of the microscope: a) Intensity level 3: representing ex-
tremely weak illumination; b) Intensity level 4: representing
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Fig. 4. Typical sample images for focus variation experiment. (a) Focused: the
focal plane is at the equator of the microsphere. (b) 12.5 �m: the focal plane is
at the supporting surface. (c) 25 �m: the focal plane is 25 �m below the equator.
(d) 37.5 �m: the focal plane is 37.5 �m below the equator.

weak illumination; c) Intensity level 5: representing normal il-
lumination; d) Intensity level 6: representing strong illumina-
tion; and e) Intensity level 7: representing extremely strong illu-
mination (image not shown). Two experimental schemes were
performed using these images. To create the situation of small
within-class variation, ANNs based on both PCA and FLD were
trained with images only in Intensity level 3 and then tested with
all levels in Scheme 1. In Scheme 2, within-class variation was
purposely introduced by training the neural network with Inten-
sity levels 4, 5, and 6 together and then tested again with all
levels.

3) Size (Scale) Variation: In the size variation experiment,
computer generated images of microspheres with 0%, 5%, 10%,
15%, and 20% variations in size were used (image not shown).
Again, two schemes were used to examine the effect of size
variation on both PCA and FLD methods. In Scheme 1, ANNs
were trained with only microspheres having 0% size variation
and tested to all sizes. In Scheme 2, they were trained using
images with both 0% and 15% variation. The patch size used in
both schemes was fixed to a value that was big enough to contain
the biggest microspheres.

4) Noise Variation: The noise used in noise variation exper-
iments was zero-mean Gaussian noise with different standard
deviations. An image set with five groups of images, each have
different noise levels was created by adding computer generated
noise to original images. The original images (standard devia-
tion equals zero) belonged to the first group. Groups 2, 3, 4, and
5 contained images in which the standard deviations equaled 15,
30, 45, and 60, respectively (image not shown). The two experi-
mental schemes were: first, both PCA and FLD were applied to
only Group 1 and then tested on all groups. Second, the training
set was expanded to include both Groups 1 and 4.

In Fig. 5, we present only the results for focus variations.
For illumination, size, and noise variations, similar results were
obtained.

Some interesting points were revealed in the experiments.
First, both PCA and FLD preprocessing performed well if
presented with images in the test set which were selected from

Fig. 5. Misclassification rates with different focus conditions and
preprocessing methods. (a) Scheme 1: trained with only focused samples
and applied to all samples. (b) Scheme 2: trained with focused and 25 �m focus
variation samples and applied to all samples.

the group(s) used for training. This is reasonable because the
classifiers have learned very similar data during the training.
Second, increasing the number of principal components in
PCA preprocessing did improve the performance, but it was
still worse than that of FLD. Furthermore, both preprocessing
methods performed similarly in Scheme 1 for each of the
factors studied, but very differently in Scheme 2, with the
error rate of FLD being much less than that of PCA in both
interpolation and extrapolation tests. The reason lies in that,
for Scheme 1, all images in the training set came exclusively
from a single group, in which all microspheres had very ho-
mogeneous appearance. Therefore, when we extracted patches
from these images and classified them into classes similar to
those in Fig. 2, the within-class variations were very small. As
expected, FLD was not superior to PCA in this case, since the
variation was almost entirely between-class variation. Scheme
2, on the contrary, purposely introduced within-class variation
into the training set by using images from different groups.
In this case, the FLD method could learn the variation trend
from the training set and choose projection directions that were
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Fig. 6. Detection results of Scenario 3. The cell positions calculated were
denoted by “+” in the images. Classifier: ANN; Preprocessing: FLD. Good
agreement between calculated and actual positions as seen (Sensitivity: 94.38%,
Positive predictive value: 91.52%).

nearly orthogonal to the within-class scatter, projecting away
variations in focus, illumination, size, and noise; the PCA
method could not. Consequently, the generalization ability
of the neural network with FLD preprocessing was greatly
improved and substantially better than a similar neural network
with PCA preprocessing in Scheme 2-type experiments.

D. Living Cell Experiments

The method introduced in this paper was also systematically
studied using bright field images of living cells. The testing im-
ages were divided into three groups denoting three different sce-
narios. Scenario 1 is the simplest case where cells are almost
completely separate and the background is clean. Scenario 2 is
more complex where most cells are attached to each other and
there are trash and debris. Scenario 3 represents the most com-
plex case where most cells are aggregated together and there is
more trash and debris. These images show considerable out of
focus blur, cells in clumps occupying multiple focal planes, as
well as size variations.

The cell positions calculated by our system are denoted by
white “+” in the images (see Fig. 6 for Scenario 3 result —Sce-
narios 1 and 2 are not shown). The detected cells were carefully
examined and compared to the reference standard created by
three experienced observers. Sensitivity (SE) and positive pre-
dictive value (PPV) [3] results are shown in comparison with
the traditional PCA preprocessing method in Table I. The SE
is defined as the percentage of cells in the reference standard,
which are identified by the classifier. The PPV is the percentage
of classifier detected cells which are also listed in the reference
standard.

The results show that for Scenario 1, which presents a rel-
atively simple case, both PCA and FLD produced very good
results. For example, they both achieved SE values of 97.73%
and PPV values of 100%. For Scenario 2, where the image is
more complex, the SEs of PCA and FLD dropped to 87.76%
and 95.92%, respectively, and PPVs dropped to 89.58% and

TABLE I
SE AND PPV RESULTS FOR LIVING CELL EXPERIMENTS

95.92%, respectively, which indicates that the FLD is superior
to PCA when the image becomes more complex. This can be
seen even more clearly in the very complex case represented by
Scenario 3. Here, the SE percentage for FLD is 11.88 greater
than that for PCA and the PPV percentage is 8.5 greater.

As noted previously, our results with microspheres suggest
that FLD can better generalize from training sets with a single
type of confounding factor. The experiments with living cells
described in this section clearly show that FLD gives superior
generalization even when multiple types of confounding factors
are present simultaneously.

With regard to speed, when our current system is running
with Matlab version 6.5.0.180913a (R13) on a standard PC with
an Intel Pentium 4/1.6G processor and 256-MB RAM, a single
training process usually takes about 30–40 min; the optimiza-
tion process described in this paper usually takes 4–5 h. After the
ANN is trained, a 640 480 sized image requires a processing
time of 1–8 min, depending on the number of cells present. This
is judged to be acceptable for many applications.

IV. CONCLUSION

An effective algorithm for cell recognition in bright field mi-
croscopy has been introduced in this paper. We developed a
novel strategy to exploit the advantages of FLD preprocessing
over PCA preprocessing. In addressing the variability of cell
size and morphology, as well as variations in microscope param-
eters, such as focus and illumination, FLD preprocessing was
clearly superior to PCA in all four types of variations studied.
This holds true for both microsphere and actual cell recognition.
The primary reason is that FLD optimizes the solution by maxi-
mizing the ratio of between-class scatter to within-class scatter,
while PCA maximizes only the effect of total scatter.
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